[1] MALAGURSKI I, LEVIC S, NESIC A, et al. Dimitrijevic-Brankovic S. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties[J]. Carbohydrate Polymers, 2017, 175: 55-62.
[2] ELEFTHERIADOU M, PYRGIOTAKIS G, DEMOKRITOU P. Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality[J]. Biotachnology, 2017, 44: 87-93.
[3] KADRI H E, DEVANTHI P V P, OVERTONA T W, et al. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria[J]. Food Research International, 2017,101:114-128.
[4] RHIM J W, PARK H M, HA C S. Bio-nanocomposites for food packaging applications[J]. Progress in Polymer Science, 2013, 38(10-11): 1 629-1 652.
[5] BAN G H, LEE J, CHOI C H, et al. Nano-patterned aluminum surface with oil-impregnation for improved antibacterial performance[J]. LWT-Food Science and Technology, 2017, 84: 359-363.
[6] FOSTER H A , DITTA I B, VARGHESE S, et al. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity[J]. Applied Microbiology and Biotechnology, 2011, 90(6): 1 847-1 868.
[7] ZHANG X D, XIAO G, WANG Y Q, et al. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications[J]. Carbohydrate Polymers, 2017,169:101-107.
[8] KASINATHAN K, KENNEDY J, ELAYAPERUMAL M, et al. Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications[J]. Scientific Report, 2016, 6: 38 064.
[9] APONIENE K, LUKSIENE Z. Effective combination of LED-based visible light, photosensitizer and photocatalyst to combat Gram (-) bacteria[J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 142: 257-263.
[10] KHAN A, HUQ T, KHAN R A, et al. Nanocellulose-based composites and bioactive agents for food packaging[J]. Critical Reviews in Food Science & Nutrition, 2014, 54(2):163-174.
[11] BURT S. Essential oils: their antibacterial properties and potential applications in foods-a review.[J]. International Journal of Food Microbiology, 2004, 94(3):223-253.
[12] LIAKOS I, RIZZELLO L, BAYER I S, et al. Controlled antiseptic release by alginate polymer films and beads[J]. Carbohydrate Polymers, 2013, 92(1):176-183.
[13] 罗自生, 张莉. 壳聚糖/纳米SiOx复合物涂膜对鲜切竹笋品质和生理的影响[J]. 2010, 43(22): 4 694-4 700.
[14] LIU M C, GUO M J, YAN M X, et al. Antimicrobial nanomaterials against biofilms: an alternative strategy[J]. Environmental Reviews, 2016, 25(2): 225-244.
[15] YEMMIREDDY V K, HUNG Y C. Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety-opportunities and challenges[J]. Comprehensive Reviews in Food Science & Food Safety, 2017, 16(4):617-631.
[16] KIM J S, KUK E, YU K N, et al. Antimicrobial effects of silver nanoparticles.[J]. Nanomedicine Nanotechnology Biology & Medicine, 2007, 3(1):95-101.
[17] PAL S, YU K T, SONG J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli[J]. Applied & Environmental Microbiology, 2007, 73(6):1 712-1 720.
[18] CAVALIERE E, CESARI S D, LANDINI G, et al. Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition[J]. Nanomedicine Nanotechnology Biology & Medicine, 2015, 11(6):1 417-1 423.
[19] SHANKAR S, RHIM J W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films[J]. Carbohydrate Polymers, 2015, 130:353-363.
[20] HOSSEINI R, AHARI H, MAHASTI P, et al. Measuring the migration of silver from silver nanocomposite polyethylene packaging based on (TiO2) into Penaeus semisulcatus, using titration comparison with migration methods[J]. Fisheries Science, 2017, 83(4):649-659.
[21] KANMANI P, RHIM J W. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films[J]. Food Chemistry, 2014, 148(2):162-169.
[22] ABREU A S, OLIVEIRA M, DE S A, et al. Antimicrobial nanostructured starch based films for packaging[J]. Carbohydrate Polymers, 2015, 129:127.
[23] LI W, ZHANG C, CHI H, et al. Development of antimicrobial packaging film made from poly(lactic acid) incorporating titanium dioxide and silver nanoparticles[J]. Molecules, 2017, 22(7):1 170.
[24] MCEVOY J G, ZHANG Z. Antibacterial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2014, 19(1):62-75.
[25] GUO L, YUAN W, LU Z, et al. Polymer/nanosilver composite coatings for antibacterial applications[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 439(2):69-83.
[26] ISHIHARA M, NGUYEN V Q, MORI Y, et al. Adsorption of silver nanoparticles onto different surface structures of chitin/chitosan and correlations with antimicrobial activities[J]. International Journal of Molecular Sciences, 2015, 16(6):13 973-13 988.
[27] LATIF U, AL-RUBEAAN K, SAEB A T M. A review on antimicrobial chitosan-silver nanocomposites: A roadmap toward pathogen targeted synthesis[J]. International Journal of Polymeric Materials & Polymeric Biomaterials, 2015, 64(9):448-458.
[28] LIU Y, ROSENFIELD E, HU M, et al. Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles.[J]. Water Research, 2013, 47(9):2 949-2 958.
[29] KERNBERGER-FISCHER I, KEHRENBERG C, KLEIN G, et al. Influence of modified atmosphere and vacuum packaging with and without nanosilver-coated films on different quality parameters of pork[J]. Journal of Food Science & Technology, 2017, 54(10):3 251-3 259.
[30] LI J H, HONG R Y, LI M Y, et al. Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings[J]. Progress in Organic Coatings, 2009, 64(4):504-509.
[31] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7(3):219-242.
[32] MORITZ M, GESZKE-MORITZ M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles[J]. Chemical Engineering Journal, 2013, 228(14):596-613.
[33] PADMAVATHY N, VIJAYARAGHAVAN R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study[J]. Science & Technology of Advanced Materials, 2008, 9(3):035004.
[34] ALI A, AMBREEN S, JAVED R, et al. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties[J]. Materials Science & Engineering C, 2017, 74:137-145.
[35] ESPITIA P J P, SOARES N D F F, COIMBRA J S D R, et al. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications[J]. Food & Bioprocess Technology, 2012, 5(5):1 447-1 464.
[36] OUN A A, RHIM J W. Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties[J]. Food Hydrocolloids, 2017, 67:45-53.
[37] 匡衡峰, 胡长鹰, 温晓敏. 等. 纳米 ZnO /壳聚糖复合膜的性能及在冷鲜猪肉保藏中的应用[J]. 食品与发酵工业, 2017, 43(4): 251-256.
[38] LI D, LI L, LUO Z, et al. Effect of nano-ZnO-packaging on chilling tolerance and pectin metabolism of peaches during cold storage[J]. Scientia Horticulturae, 2017, 225:128-133.
[39] UHM S H, SONG D H, KWON J S, et al. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2014, 102(3):592-603.
[40] XING Y, LI X, ZHANG L, et al. Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film[J]. Progress in Organic Coatings, 2012, 73(2):219-224.
[41] LI D, YE Q, JIANG L, et al. Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature[J]. Journal of the Science of Food & Agriculture, 2017, 97(4):1 116.
[42] 罗自生, 叶轻飏, 李栋栋. 纳米二氧化钛改性 LDPE 薄膜包装对草莓品质的影响[J]. 现代食品科技, 2013, 29(10): 2 340-2 344.
[43] LUO ZS, YU Q, YE QY. Effect of nano-TiO2-LDPE packaging on microbiological andphysicochemical quality of Pacific white shrimp during chilledstorage[J]. International Journal of Food Science and Technology, 2015, 50: 1 567-1 573.
[44] 路红艳, 李莉, 罗自生. 纳米TiO2改性低密度聚乙烯包装保持山核桃贮藏品质[J]. 农业工程学报, 2017, 33(3): 288-293.
[45] 吴朝凌, 郝文婷, 孙彤,等. 纳米镁化合物对壳聚糖复合涂膜性能的影响[J]. 中国食品学报, 2016, 16(3):51-57.
[46] LUO Z, WANG Y, WANG H, et al. Impact of nano-CaCO3 -LDPE packaging on quality of fresh-cut sugarcane[J]. Journal of the Science of Food & Agriculture, 2014, 94(15):3 273.
[47] 徐庭巧, 魏云潇, 王毅, 等. 纳米碳酸钙改性聚乙烯膜对杨梅贮藏品质和生理的影响[J]. 现代食品科技, 2016, 32(10): 205-210.
[48] 徐晓玲, 梅安待, 罗自生,等. 壳聚糖添加纳米碳酸钙助剂涂膜对枇杷品质的影响[J]. 食品与发酵工业, 2008, 34(4):142-145.
[49] 门真真. 纳米化山梨酸制备及其在香肠中应用的研究[D]. 无锡:江南大学. 2010.
[50] 武陶, 丁武. 山梨酸纳米防腐颗粒的制备、表征及其缓释性能[J]. 食品科学, 2014, 35(10):57-61.