Application and development of nano antimicrobial agent in food

  • LU Ling ,
  • LI Li ,
  • LUO Zi-sheng
Expand
  • College of Biosystems Engineering and Food Science,Zhejiang University,Hangzhou 310058,China

Received date: 2018-03-22

  Online published: 2018-10-30

Abstract

Microorganism growing on the food surface not only spoils and deteriorates food, but also affects the presentation, quality and safety of food. Nanotechnology has a huge potential for development in the fields of food, agriculture and medicine, due to its excellent advantages such as size effect and surface effect. In this paper, the antimicrobial properties and mechanisms of Nanoparticles (NPs) as antimicrobial agents such as nano-ZnO, nano-TiO2, nano-MgO, nano-CaCO3 and nano-sorbic acid were reviewed. The approaches employing NPs as effective antimicrobial agent, and associated challenges and problems in developing NPs as effective antibiofilm agents, were also discussed.

Cite this article

LU Ling , LI Li , LUO Zi-sheng . Application and development of nano antimicrobial agent in food[J]. Food and Fermentation Industries, 2018 , 44(9) : 275 -281 . DOI: 10.13995/j.cnki.11-1802/ts.017350

References

[1] MALAGURSKI I, LEVIC S, NESIC A, et al. Dimitrijevic-Brankovic S. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties[J]. Carbohydrate Polymers, 2017, 175: 55-62.
[2] ELEFTHERIADOU M, PYRGIOTAKIS G, DEMOKRITOU P. Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality[J]. Biotachnology, 2017, 44: 87-93.
[3] KADRI H E, DEVANTHI P V P, OVERTONA T W, et al. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria[J]. Food Research International, 2017,101:114-128.
[4] RHIM J W, PARK H M, HA C S. Bio-nanocomposites for food packaging applications[J]. Progress in Polymer Science, 2013, 38(10-11): 1 629-1 652.
[5] BAN G H, LEE J, CHOI C H, et al. Nano-patterned aluminum surface with oil-impregnation for improved antibacterial performance[J]. LWT-Food Science and Technology, 2017, 84: 359-363.
[6] FOSTER H A , DITTA I B, VARGHESE S, et al. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity[J]. Applied Microbiology and Biotechnology, 2011, 90(6): 1 847-1 868.
[7] ZHANG X D, XIAO G, WANG Y Q, et al. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications[J]. Carbohydrate Polymers, 2017,169:101-107.
[8] KASINATHAN K, KENNEDY J, ELAYAPERUMAL M, et al. Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications[J]. Scientific Report, 2016, 6: 38 064.
[9] APONIENE K, LUKSIENE Z. Effective combination of LED-based visible light, photosensitizer and photocatalyst to combat Gram (-) bacteria[J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 142: 257-263.
[10] KHAN A, HUQ T, KHAN R A, et al. Nanocellulose-based composites and bioactive agents for food packaging[J]. Critical Reviews in Food Science & Nutrition, 2014, 54(2):163-174.
[11] BURT S. Essential oils: their antibacterial properties and potential applications in foods-a review.[J]. International Journal of Food Microbiology, 2004, 94(3):223-253.
[12] LIAKOS I, RIZZELLO L, BAYER I S, et al. Controlled antiseptic release by alginate polymer films and beads[J]. Carbohydrate Polymers, 2013, 92(1):176-183.
[13] 罗自生, 张莉. 壳聚糖/纳米SiOx复合物涂膜对鲜切竹笋品质和生理的影响[J]. 2010, 43(22): 4 694-4 700.
[14] LIU M C, GUO M J, YAN M X, et al. Antimicrobial nanomaterials against biofilms: an alternative strategy[J]. Environmental Reviews, 2016, 25(2): 225-244.
[15] YEMMIREDDY V K, HUNG Y C. Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety-opportunities and challenges[J]. Comprehensive Reviews in Food Science & Food Safety, 2017, 16(4):617-631.
[16] KIM J S, KUK E, YU K N, et al. Antimicrobial effects of silver nanoparticles.[J]. Nanomedicine Nanotechnology Biology & Medicine, 2007, 3(1):95-101.
[17] PAL S, YU K T, SONG J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli[J]. Applied & Environmental Microbiology, 2007, 73(6):1 712-1 720.
[18] CAVALIERE E, CESARI S D, LANDINI G, et al. Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition[J]. Nanomedicine Nanotechnology Biology & Medicine, 2015, 11(6):1 417-1 423.
[19] SHANKAR S, RHIM J W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films[J]. Carbohydrate Polymers, 2015, 130:353-363.
[20] HOSSEINI R, AHARI H, MAHASTI P, et al. Measuring the migration of silver from silver nanocomposite polyethylene packaging based on (TiO2) into Penaeus semisulcatus, using titration comparison with migration methods[J]. Fisheries Science, 2017, 83(4):649-659.
[21] KANMANI P, RHIM J W. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films[J]. Food Chemistry, 2014, 148(2):162-169.
[22] ABREU A S, OLIVEIRA M, DE S A, et al. Antimicrobial nanostructured starch based films for packaging[J]. Carbohydrate Polymers, 2015, 129:127.
[23] LI W, ZHANG C, CHI H, et al. Development of antimicrobial packaging film made from poly(lactic acid) incorporating titanium dioxide and silver nanoparticles[J]. Molecules, 2017, 22(7):1 170.
[24] MCEVOY J G, ZHANG Z. Antibacterial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2014, 19(1):62-75.
[25] GUO L, YUAN W, LU Z, et al. Polymer/nanosilver composite coatings for antibacterial applications[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 439(2):69-83.
[26] ISHIHARA M, NGUYEN V Q, MORI Y, et al. Adsorption of silver nanoparticles onto different surface structures of chitin/chitosan and correlations with antimicrobial activities[J]. International Journal of Molecular Sciences, 2015, 16(6):13 973-13 988.
[27] LATIF U, AL-RUBEAAN K, SAEB A T M. A review on antimicrobial chitosan-silver nanocomposites: A roadmap toward pathogen targeted synthesis[J]. International Journal of Polymeric Materials & Polymeric Biomaterials, 2015, 64(9):448-458.
[28] LIU Y, ROSENFIELD E, HU M, et al. Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles.[J]. Water Research, 2013, 47(9):2 949-2 958.
[29] KERNBERGER-FISCHER I, KEHRENBERG C, KLEIN G, et al. Influence of modified atmosphere and vacuum packaging with and without nanosilver-coated films on different quality parameters of pork[J]. Journal of Food Science & Technology, 2017, 54(10):3 251-3 259.
[30] LI J H, HONG R Y, LI M Y, et al. Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings[J]. Progress in Organic Coatings, 2009, 64(4):504-509.
[31] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7(3):219-242.
[32] MORITZ M, GESZKE-MORITZ M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles[J]. Chemical Engineering Journal, 2013, 228(14):596-613.
[33] PADMAVATHY N, VIJAYARAGHAVAN R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study[J]. Science & Technology of Advanced Materials, 2008, 9(3):035004.
[34] ALI A, AMBREEN S, JAVED R, et al. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties[J]. Materials Science & Engineering C, 2017, 74:137-145.
[35] ESPITIA P J P, SOARES N D F F, COIMBRA J S D R, et al. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications[J]. Food & Bioprocess Technology, 2012, 5(5):1 447-1 464.
[36] OUN A A, RHIM J W. Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties[J]. Food Hydrocolloids, 2017, 67:45-53.
[37] 匡衡峰, 胡长鹰, 温晓敏. 等. 纳米 ZnO /壳聚糖复合膜的性能及在冷鲜猪肉保藏中的应用[J]. 食品与发酵工业, 2017, 43(4): 251-256.
[38] LI D, LI L, LUO Z, et al. Effect of nano-ZnO-packaging on chilling tolerance and pectin metabolism of peaches during cold storage[J]. Scientia Horticulturae, 2017, 225:128-133.
[39] UHM S H, SONG D H, KWON J S, et al. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2014, 102(3):592-603.
[40] XING Y, LI X, ZHANG L, et al. Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film[J]. Progress in Organic Coatings, 2012, 73(2):219-224.
[41] LI D, YE Q, JIANG L, et al. Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature[J]. Journal of the Science of Food & Agriculture, 2017, 97(4):1 116.
[42] 罗自生, 叶轻飏, 李栋栋. 纳米二氧化钛改性 LDPE 薄膜包装对草莓品质的影响[J]. 现代食品科技, 2013, 29(10): 2 340-2 344.
[43] LUO ZS, YU Q, YE QY. Effect of nano-TiO2-LDPE packaging on microbiological andphysicochemical quality of Pacific white shrimp during chilledstorage[J]. International Journal of Food Science and Technology, 2015, 50: 1 567-1 573.
[44] 路红艳, 李莉, 罗自生. 纳米TiO2改性低密度聚乙烯包装保持山核桃贮藏品质[J]. 农业工程学报, 2017, 33(3): 288-293.
[45] 吴朝凌, 郝文婷, 孙彤,等. 纳米镁化合物对壳聚糖复合涂膜性能的影响[J]. 中国食品学报, 2016, 16(3):51-57.
[46] LUO Z, WANG Y, WANG H, et al. Impact of nano-CaCO3 -LDPE packaging on quality of fresh-cut sugarcane[J]. Journal of the Science of Food & Agriculture, 2014, 94(15):3 273.
[47] 徐庭巧, 魏云潇, 王毅, 等. 纳米碳酸钙改性聚乙烯膜对杨梅贮藏品质和生理的影响[J]. 现代食品科技, 2016, 32(10): 205-210.
[48] 徐晓玲, 梅安待, 罗自生,等. 壳聚糖添加纳米碳酸钙助剂涂膜对枇杷品质的影响[J]. 食品与发酵工业, 2008, 34(4):142-145.
[49] 门真真. 纳米化山梨酸制备及其在香肠中应用的研究[D]. 无锡:江南大学. 2010.
[50] 武陶, 丁武. 山梨酸纳米防腐颗粒的制备、表征及其缓释性能[J]. 食品科学, 2014, 35(10):57-61.
Outlines

/