In order to elucidate the effects of the genes encoding key enzymes in the porphyrin synthetic pathway as well as environmental factors on the regulation of porphyrin metabolism in E.coli, genes of gltX, hemA, hemB, hemD hemH and hemA-hemD were homogenously overexpressed respectively, and the effects of environmental factors on the precursor 5-aminolevulinic (ALA) and heme biosynthesis were analyzed. The results showed that the overexpression of hemA promoted the synthesis of heme obviously, and the effects of temperature and dissolved oxygen on the production of ALA and heme in Eco/pEA, a hemA overexpressed strain, were inconsistent. Under the optimal condition, the heme content in Eco/pEA was 11.7 fold of that in the parent strain. Therefore, the differences were significant among gene-overexpressing strains under different environmental conditions in porphyrin metabolism.
CHEN Dan-yuan
,
SHEN Yun-jie
,
YANG Yan
,
TANG Lei
. Regulation of heme synthesis in Escherichia coli by overexpression of genes for the key enzymes and environmental factors[J]. Food and Fermentation Industries, 2018
, 44(11)
: 7
-14
.
DOI: 10.13995/j.cnki.11-1802/ts.017222
[1] 宋艳群,祝融峰,陈鹏. 血红素的生理分布与调控[J]. 中国科学:化学, 2015(11): 1 194-1 205.
[2] GEISSER P, BURCKHARDT S. The pharmacokinetics and pharmacodynamics of iron preparations[J]. Pharmaceutics, 2011, 3(1): 12-33.
[3] TURKSEVEN S, KRUGER A, MINGONE C J, et al. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes[J]. American Journal of Physiology-Heart and Circulatory Physiology. 2005, 289(2): H701-H707.
[4] KHAN A A, QUIGLEY J G. Control of intracellular heme levels: Heme transporters and heme oxygenases[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2011, 1813(5): 668-682.
[5] RODGERS K R. Heme-based sensors in biological systems[J]. Current Opinion in Chemical Biology, 1999, 3(2): 158-167.
[6] CHAN M K. Recent advances in heme-protein sensors[J]. Current Opinion in Chemical Biology, 2001, 5(2): 216-222.
[7] MACMUNN C A. Researches on myohaematin and the histohaematins[J]. Philosophical Transactions of the Royal Society of London, 1885, 39: 248-252.
[8] REEDY C J, GIBNEY B R. Heme protein assemblies[J]. Chemical Reviews, 2004, 104(2): 617-650.
[9] YIN Lei, WU Nan, CURTIN J C, et al. Reverb alpha, a heme sensor that coordinates metabolic and circadian pathways[J]. Science, 2007, 318(5 857): 1 786-1 789.
[10] HOU Shang-wei, XU Rong, HEINEMANN S H, et al. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 4 039-4 043.
[11] KANG Zhen, WANG Yang, GU Peng-fei, et al. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose[J]. Metabolic Engineering, 2011, 13(5): 492-498.
[12] LEE M J, KIM H J, LEE J Y, et al. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2013, 23(5): 668-673.
[13] YU Xiao-li, JIN Hai-ying, CHENG Xue-lian, et al. Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum[J]. Microbiological Research, 2016, 192: 292-299.
[14] ZHANG Jun-li, KANG Zhen, DING Wen-wen, et al. Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production[J]. Applied Biochemistry and Biotechnology, 2016, 178(6): 1 252-1 262.
[15] SASSA S. Sequential induction of heme pathway enzymes during erythroid differentiation of mouse friend leukemia virus-infected cells[J]. The Journal of Experimental Medicine, 1976, 143(2): 305-315.
[16] LIU Li-fang, MARTINEZ J L, LIU Zi-he, et al. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2014, 21(10): 9-16.
[17] 李智祥,赵磊,梁云龙,等. 生物法合成5-氨基乙酰丙酸的研究进展[J]. 发酵科技通讯, 2017(3): 178-182.
[18] 康振,张俊丽,杨森,等. 微生物发酵生产5-氨基乙酰丙酸研究进展[J]. 生物工程学报, 2013, 29(9): 1 214-1 222.
[19] LIU Shu-li, ZHANG Guang-ming, LI Xiang-kun, et al. Microbial production and applications of 5-aminolevulinic acid[J]. Applied Microbiology and Biotechnology, 2014, 98(6): 7 349-7 357.
[20] O’BRIAN M R. Encyclopedia of microbiology[M]. Amsterdam, Elsevier,,2009:194-209.
[21] ZHANG Jun-li, KANG Zhen, CHEN Jian, et al. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli[J]. Scientific Reports, 2015, 5(17):8 584-8 591.
[22] 马蓉,徐昊,丁锐,等. 大肠杆菌多基因共表达策略[J].中国生物工程杂志,2012,32(4): 117-122.
[23] HEINEMANN I U, JAHN M, JAHN D. The biochemistry of heme biosynthesis[J]. Archives of Biochemistry and Biophysics, 2008, 474(2): 238-251.
[24] CONESA A, VAN-DEN-HONDEL C A, PUNT P J. Studies on the production of fungal peroxidases in Aspergillus niger[J]. Applied and Environmental Microbiology, 2000, 66(7): 3 016-3 023.
[25] SEGURA M D L M, LEVIN G, MIRANDA M V, et al. High-level expression and purification of recombinant horseradish peroxidase isozyme C in SF-9 insect cell culture[J]. Process Biochemistry, 2005, 40(2): 795-800.
[26] MORAWSKI B, LIN Z, CIRINO P C, et al. Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris[J]. Protein Engineering, 2000, 13(5): 377-384.
[27] 黄加保. 芥蓝抗坏血酸过氧化物酶在大肠杆菌中的基因表达及酶学性质研究[D]. 无锡:江南大学, 2013.
[28] 李芳芳. 大肠杆菌血红素合成途径的改造与调控对5-氨基乙酰丙酸积累和菌体代谢的影响[D]. 济南:山东大学, 2014.