Drug-release of carboxymethyl konjac glucomannan-alginate microcapsule in vitro

  • FANG Kun ,
  • LI Jian-bin ,
  • WEI Qun-shu ,
  • NIE Hui ,
  • LIU Pei-hua ,
  • CHEN Yu ,
  • JIANG Ning-ning
Expand
  • 1(Institute of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China)
    2(Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, China)

Received date: 2018-01-03

  Online published: 2019-01-22

Abstract

Using carboxymethyl modified konjac glucomannan as raw material and bovine serum albumin as the mimic drug, the carboxymethyl konjac glucomannan/sodium alginate sustained microcapsules were prepared via orifice method. By simulating the human environment in vitro, the human digestive juice was formulated to study the drug release properties and mechanism of the carboxymethyl konjac glucomannan/sodium alginate microcapsules. The results showed that the microcapsules were released slowly in 0-5 h, continued to release in 6-9 h, and the release was basically gentle in 10-12 h. The quality of bovine serum albumin had an effect on the release of microcapsules. When the mass of bovine serum albumin was 30.0 mg, The drug release of microcapsules had a good sustained release effect. The model release of microcapsules showed that the Higuchi equation was more suitable for the release of the drug in vitro, and the drug release was mainly composed of Fick diffusion.

Cite this article

FANG Kun , LI Jian-bin , WEI Qun-shu , NIE Hui , LIU Pei-hua , CHEN Yu , JIANG Ning-ning . Drug-release of carboxymethyl konjac glucomannan-alginate microcapsule in vitro[J]. Food and Fermentation Industries, 2018 , 44(12) : 86 -91 . DOI: 10.13995/j.cnki.11-1802/ts.016688

References

[1] HUANG L, TAKAHASHI R, KOBAYASHI S, et al. Gelation behavior of native and acetylated konjac glucomannan[J]. Biomacromolecules, 2002, 3(6):1 296-1 303.
[2] NISHINARI K, TAKAHASHI R. Interaction in polysaccharide solutions and gels[J]. Current Opinion in Colloid & Interface Science, 2003, 8(4/5):396-400.
[3] JIAN Wen-jie, WU Jian-yong. Effects of pH and temperature on colloidal properties and molecular characteristics of Konjac glucomannan[J]. Carbohydrate Polymers, 2015, 134:285-292.
[4] BEHERA S S, RAY R C. Konjac glucomannan, a promising polysaccharide of amorphophallus konjac K. Koch in health care[J]. International Journal of Biological Macromolecules, 2016, 92:942-956.
[5] ZHANG Cui, CHEN Ji-da, YANG Feng-qing. Konjac glucomannan, a promising polysaccharide for OCDDS[J]. Carbohydrate Polymers, 2014, 104(1):175-181.
[6] JI Lei, XUE Yong, ZHANG Tao, et al. The effects of microwave processing on the structure and various quality parameters of Alaska pollock surimi protein-polysaccharide gels[J]. Food Hydrocolloids, 2017, 63:77-84.
[7] HUANG Qing, GE Hong-he, JIN Wei-ping, et al. Significant improvement for the functional properties of konjac glucomannan based on phase separation[J]. International Journal of Food Science & Technology, 2016, 51(11): 2 396-2 405.
[8] JIAN Wei-jin, WU Hua-yi, WU Lan-lan, et al. Effect of molecular characteristics of Konjac glucomannan on gelling and rheological properties of Tilapia myofibrillar protein[J]. Carbohydrate Polymers, 2016, 150:21-31.
[9] 杨晓鸿. 魔芋胶的交联化学改性研究[J]. 应用化工, 2004, 33(1):9-11.
[10] WU Li-ping, LIN Xiao-yan, WU Jia-jie, et al. Adsorption behavior of carboxymethyl konjac glucomannan microspheres for fluoride from aqueous solution[J]. Rsc Advances, 2016, 6(92):89 417-89 429.
[11] 王萌.葡甘聚糖改性制备纸张增强剂的研究[D]. 北京:北京林业大学, 2016.
[12] 覃余敏. 改性魔芋粉CMK的制备及其理化性能的研究[J]. 江苏丝绸, 2002(6):16-19.
[13] ZUBER M, ZIA F, ZIA K M, et al. Collagen based polyurethanes-A review of recent advances and perspective[J]. International Journal of Biological Macromolecules, 2015, 79:377-387.
[14] CI S X, HUYNH T H, LOUIE L W, et al. Molecular mass distribution of sodium alginate by high-performance size-exclusion chromatography[J]. Journal of Chromatography A, 1999, 864(2):199-210.
[15] 王婷婷. 海藻酸钠微球包封L-抗坏血酸的制备及其在化妆品中的应用[D]. 无锡:江南大学, 2014.
[16] KONG H J, SMITH M K, MOONEY D J. Designing alginate hydrogels to maintain viability of immobilized cells[J]. Biomaterials, 2003, 24(22):4 023-4 029.
[17] VENKATESAN J, BHATNAGAR I, MANIVASAGAN P, et al. Alginate composites for bone tissue engineering: A review[J]. International Journal of Biological Macromolecules, 2015, 72:269-281.
[18] TREENATE P, MONVISADE P. In vitro, drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug[J]. International Journal of Biological Macromolecules, 2017, 99:71-78.
[19] 陈红,徐静,康晓梅,等. 海藻酸钠及其复合材料在生物医药中的研究进展[J]. 世界科技研究与发展, 2010, 32(4):536-539.
[20] 樊华,张其清. 海藻酸钠在药剂应用中的研究进展[J]. 中国药房, 2006, 17(6):465-467.
[21] 宋健,陈磊,李效军. 微胶囊化技术及应用[M]. 北京:化学工业出版社,2001(1): 25-29.
[22] 李占锋. 多功能载药微胶囊的超声化学制备及其性能研究[D]. 长春:吉林大学, 2016.
[23] 汪洋,张成伟. 微囊化技术在药剂学中的应用[J]. 中国实用医药, 2008, 3(12): 183-185.
[24] WANG Kang, HE Zhi-ming. Alginate-konjac glucomannan-chitosan beads as controlled release matrix[J]. International Journal of Pharmaceutics, 2002, 244(2): 117-126.
[25] WU Qing-xi, YAO Shan-jing. Novel NaCS-CS-PPS microcapsules as a potential enzyme-triggered release carrier for highly-loading 5-ASA[J]. Original Research Article Colloids and Surfaces B: Biointerfaces, 2013(109): 147-153.
[26] 黄静,潘丽军. 一种快速准确测定羧甲基淀粉取代度的方法[J]. 食品工业科技, 2003(3): 82-58.
[27] 朱颖,程宁,王雨青,等. 硫酸沙丁胺醇脉冲微丸释放特性的模型拟合和比较[J]. 中国医药工业杂志, 2006, 37(1):20-22
Outlines

/