Research progress on pollution and detection technology of mercury and methylmercury in food

  • LI Si-yuan ,
  • HUANG Guang-zhi ,
  • DING Xiao-wen
Expand
  • 1(Chongqing Key Laboratory of Agricultural Products Processing and Store, National Demonstration Center for Experimental Food Science and Technology Education, College of Food Science, Southwest University, Chongqing 400716, China)
    2(Department of Science and Technology, Southwest University, Chongqing 400716, China)

Received date: 2018-01-18

  Online published: 2019-01-22

Abstract

Mercury is a kind of heavy metal which is harmful to human and is widely polluted in the environment, the exposure to mercury can cause a series of harmful effects on health in varying degrees, such as brain damage, kidney failure, nervous system and immune system damage. People's main contamination by mercury comes from foods, so it is important to determination mercury. This paper summarizes the present situation, source and harm of mercury pollution, introduces the limitation of mercury in food domestic and abroad, analyses the detection technology of mercury in food and prospects the development of detection technology.

Cite this article

LI Si-yuan , HUANG Guang-zhi , DING Xiao-wen . Research progress on pollution and detection technology of mercury and methylmercury in food[J]. Food and Fermentation Industries, 2018 , 44(12) : 295 -301 . DOI: 10.13995/j.cnki.11-1802/ts.016847

References

[1] SU Dou-yue, YANG Xin, XIA Qing-dong, et al. Folic acid functionalized silver nanoparticles with sensitivity and selectivity colorimetric and fluorescent detection for Hg2+ and efficient catalysis[J].Nanotechnology,2014,25(35).
[2] 陈子安,聂志勇,李万华,等.汞的肾毒性及治疗研究进展[J].中国药理学与毒理学杂志,2016,30(3):286-290.
[3] 李健,刘苹.甲基汞的神经行为毒性[J].昆明医科大学学报,1999(3):83-87.
[4] GOODRICH J M, BASU N, FRANZBLAU A, et al. Mercury biomarkers and DNA methylation among Michigan dental professionals[J]. Environmental and Molecular Mutagenesis, 2013, 54(3): 195-203.
[5] 吕博,赵玲双,刘赟妮,等.汞污染的来源及修复技术[J].现代农业科技,2017(1):188.
[6] FENG X B, TANG S L, SHANG L H, et al. Total gaseous mercury in the atmosphere of Guiyang, PR China[J]. Science of the Total Environment,2003,304(1/3):61-72.
[7] WILSON S, KINDBOM K, YARAMENKA K, et al. Technical Background Report for the Global Mercury Assessment 2013[M].2013:4-68.
[8] 钱坤,齐月,何阳,等.食品中重金属汞污染状况与治理对策研究[J].黑龙江农业科学,2016(5):107-109.
[9] CLMENS S, MONPERRUS M, DONARD O F X, et al. Mercury speciation in seafood using isotope dilution analysis: a review[J]. Talanta,2012,89:12-20.
[10] DALAL E L H, CHRISTOPHER T S, AMANDA E P, et al. A review of mercury concentrations in freshwater fishes of Africa: Patterns and predictors[J]. Environmental Toxicology and Chemistry,2015,34(2):215-223.
[11] SHEN Tong-fei, YUE Qiao-li, JIANG Xiu-xiu, et al. A reusable and sensitive biosensor for total mercury in canned fish based on fluorescence polarization[J], Talanta,2013,117:81-86.
[12] DE JESUS R M, SILVA L O B, CASTRO J T, et al. Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry[J]. Talanta,2013,106:293-297.
[13] PARKS J M, JOHS A, PODAR M, et al. The genetic basis for bacterial mercury methylation[J]. Science,2013,339(6 125):1 332-1 335.
[14] POULAIN A J, BARKAY T. Cracking the mercury methylation code[J]. Science, 2013,339(6 125):1 280-1 281.
[15] 赵静,孙海娟,冯叙桥.食品中重金属汞污染状况及其检测技术研究进展[J].食品工业科技,2014,35(7):357-363,367.
[16] BAKIR F, DAMLUJI S F, AMIN-ZAKI L, et al. Methyl mercury Poisoning in Iraq[J]. Science,1973(181):230-241.
[17] 马少元.一起饮用污染锅炉水引起慢性汞中毒事件的报道[J].环境与职业医学,2006,23(1):66.
[18] 杜吟. “雪碧汞中毒”事件有了新进展[N].中国质量报,2010-02-03(001).
[19] 赵晓亮,刘璇,许欢,等.宝鸡市市售食品中汞的污染状况及其对人群健康风险评价[J].职业与健康,2017,33(13):1 769-1 771.
[20] 宋彩军,崔建平,苏丹.2015年呼市地区抽检食品中汞污染水平分析[J].疾病监测与控制,2016,10(7):577-578.
[21] 王孝文,郭晏强,宋秋坤.蔬菜汞污染检测结果分析[J].微量元素与健康研究,2013,30(1):44-45.
[22] 中国国家标准化管理委员会.GB 2762—2017食品中污染物限量[S].北京:中国标准出版社2017.
[23] 李志勇,许业莉,刘津,等.国内外农食产品重金属限量比较分析[J].食品科技,2010,35(6):318-326.
[24] 袁晓博,冯新斌,仇广乐,等.中国大米汞含量研究[J].地球与环境,2011,3(3):318-323.
[25] 中国国家标准化管理委员会.GB5009.17—2014食品中总汞及有机汞的测定[S].北京:中国标准出版社,2014.
[26] HENRYK M, RALPHE S. Chemical vapor generation with slurry sampling: a review of applications to atomic and mass spectrometry[J]. Applied Spectroscopy Reviews,2012,47(1):41-82.
[27] 王林裴,周迎春,郑亚哲,等. 液相色谱-原子荧光光谱法分析测定水产动物及其制品中不同形态汞的含量[J]. 食品工业科技,2018,39(2):267-271,319.
[28] 赵凯,杨大进.高效液相色谱原子荧光分光光度联用法测定海产品中的甲基汞含量[J].中国食品卫生杂志,2011,23(6):534-539.
[29] FERREIRA S L C, LEMOS V A, LILVA L O B, et al. Analytical strategies of sample preparation for the determination of mercury in food matrices-A review[J]. Microchemical Journal,2015,121:227-236.
[30] CUNHA L R, COSTA T H M, CALDAS E D. Mercury concentration in breast milk and infant exposure assessment during the first 90 days of lactation in a midwestern region of Brazil[J]. Biological Trace Element Research,2013,151(1):30-37.
[31] JIMENEZ-MORENO M, LOMINCHAR M A, SIERRA M J, et al. Fast method for the simultaneous determination of monomethylmercury and inorganic mercury in rice and aquatic plants[J]. Talanta, 2018, 176: 102-107.
[32] CARRASCO L, VASSILEVA E. Determination of methylmercury in marine biota samples: method validation[J], Talanta,2014,122:106-114.
[33] REYES L H, RAHMAN G M M, FAHRENHOLZ T, et al. Comparison of methods with respect to efficiencies, recoveries, and quantitation of mercury species interconversions in food demonstrated using tuna fish[J]. Analytical and Bioanalytical Chemistry,2008,390(8):2 123-2 132.
[34] DRESSLER V L, SANTOS C M M, ANTES F G, et al. Total mercury, inorganic mercury and methyl mercury determination in red wine[J], Food Analytical Methods,2012,5(3):505-511.
[35] 樊祥,张润何,刘博,等.高效液相色谱-原子荧光光谱法测定水产品中不同形态汞含量[J].食品安全质量检测学报,2017,8(1):76-81.
[36] 李吉龙,李姗,何霜,等.测汞仪/高效液相色谱-电感耦合等离子体质谱联用法测定鱼松中总汞和甲基汞的含量[J].食品安全质量检测学报,2017,8(1):82-87.
[37] 籍术良,王芳,魏玉霞,等.液相色谱-原子荧光光谱法测定鱼肉中的甲基汞[J].中国卫生检验杂志,2018,28(2):152-154.
[38] 李清清,潘煜辰,陈贵宇,等.鱼酥制品中甲基汞和乙基汞的检测研究[J].食品工业,2017,38(6):296-299.
[39] COVACI E, SENILA M, PONTA M, et al. Methylmercury determination in seafood by photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry[J]. Talanta,2017,170:464-472.
[40] COVACI E, SENILA M, PONTA M, et al. Mercury speciation in seafood using non-chromatographic chemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry method-evaluation of methyl mercury exposure[J]. Food Control, 2017,82:266-273.
[41] DA SILVA M J, PAIM A P S, PIMENTELM F, et al. Determination of total mercury in nuts at ultratrace level[J]. Analytica Chimica Acta,2014,838:13-19.
[42] MARTINS C, VASCO E, PAIXAO E, et al. Total mercury in infant food, occurrence and exposure assessment in Portugal[J]. Food Additives & Contaminants: Part B-surveillance,2013,6(3):151-157.
[43] VIEIRA H P, NASCENTES C C, WINDMOLLER C C. Development and comparison of two analytical methods to quantify the mercury content in honey[J]. Journal of Food Composition and Analysis,2014,34(1):1-6.
[44] 张瑞华. 罗丹明6G荧光猝灭法在线测定汞离子的研究[D].石家庄:河北科技大学,2014:40-47.
[45] LASHGARI N, BADIEI A, ZIARANI G M, et al. Isatin functionalized nanoporous SBA-15 as a selective fluorescent probe for the detection of Hg(II) in water[J]. Analytical and Bioanalytical Chemistry,2017,409(12):3 175-3 185.
[46] LI Jing-shuai, DU Bin, LI Yue-wen, et al. A turn-on fluorescent sensor for highly sensitive mercury(II) detection based on a carbon dot-labeled oligo deoxyribonucleotide and MnO2 nanosheets[J]. New Journal of Chemistry,2018,42(2):1 228-1 234.
[47] 任艺.纳米银应用于蔬菜中汞含量检测的研究[D].北京:北京林业大学,2016:1-2.
[48] 张宁宁.食品中汞、镉的酶法检测技术研究[D].石家庄:河北科技大学,2014:11-19.
[49] SQUISSATO A L, ROCHA D P, Almeida E S, et al. Stripping voltammetric determination of mercury in fish oil capsules using a screen-printed gold electrode[J]. Electroanalysis, 2018, 30(1): 20-23.
[50] YU Jia, GUAN Hua-nan, CHI De-fu, et al. An amperometric glucose oxidase biosensor based on liposome microreactor-chitosan nanocomposite-modified electrode for determination of trace mercury[J]. Journal of Solid State Electrochemistry,2017,21(4):1 175-1 183.
[51] XU Yi-wei, ZHANG Wen, SHI Ji-yong, et al. Electrodeposition of gold nanoparticles and reduced graphene oxide on an electrode for fast and sensitive determination of methylmercury in fish[J]. Food Chemistry,2017,237:423-430.
[52] ZHANG Yan-yan, ZHANG Cong, MA Rui, et al. An ultra-sensitive Au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions[J]. Materials Science & Engineering C-materials for Biological Applications,2017,75:175-181.
[53] ZENG Guang-ming, ZHANG Chen, HUANG Dan-lian, et al. Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg2+-thymine base pairs for Hg2+ detection[J]. Biosensors & Bioelectronics,2017,90:542-548.
[54] LIN Yuan-yuan, PENG Yang, DI Jun-wei. Electrochemical detection of Hg(II) ions based on nanoporous gold nanoparticles modified indium tin oxide electrode[J]. Sensors and Actuators B-chemical, 2015,220:1 086-1 090.
[55] BABAMIRI B, SALIMI A, HALLAI R. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and Au nanoparticle quencher[J]. Biosensors & Bioelectronics,2018,102:328-335.
Outlines

/