Cell transformation by glutamic acid fermentation process assisted by ultrasound

  • HU Hongtong ,
  • XU Da ,
  • XU Qingyang ,
  • CHEN Ning
Expand
  • 1(National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China)
    2(Tianjin Engineering Lab of Efficient and Green Amino Acid Manufacture, Tianjin 300457, China)
    3(College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)

Received date: 2018-06-22

  Online published: 2019-02-01

Abstract

In order to further increase the permeability of glutamic acid cell membranes and glutamate production, ultrasound was used to assist glutamate fermentation. In this study, single-factor experiments and orthogonal experiments were conducted to determine the optimal ultrasonic conditions: sonicated for 50 s using 65% amplitude every 5 min. Sonication was carried out for 8 h from the beginning of the fermentation to the end of the fermentation. Under the optimal ultrasonic conditions, glutamate fermentation had the OD (600 nm) of bacteria increased 13.8% to be 82.5, the glutamic acid yield increased 11.3% to be 168 g/L, and the saccharic acid conversion rate increased 4.3% to be 68.2%. The transformation time of bacteria advanced from 4 h to 2 h. Ultrasonic assisted glutamic acid fermentation could achieve better results and make the fermentation process more stable.

Cite this article

HU Hongtong , XU Da , XU Qingyang , CHEN Ning . Cell transformation by glutamic acid fermentation process assisted by ultrasound[J]. Food and Fermentation Industries, 2019 , 45(1) : 44 -48 . DOI: 10.13995/j.cnki.11-1802/ts.018093

References

[1] 姚辉. 谷氨酸棒杆菌S9114的发酵优化及生物素对谷氨酸发酵的调控[D]. 无锡:江南大学, 2013.
[2] 曹艳, ENOCK MPOFU,丁健,等. 初始生物素含量波动时谷氨酸发酵关键酶系的酶活变化模式[J]. 化工学报, 2012, 63(7):2 188-2 194.
[3] SUSLICK K S, PRICE G J. Applications of ultrasound to materials chemistry[J]. Mrs Bulletin, 1995, 20(4):29-34.
[4] GOH K M, LAI O M, ABAS F, et al. Effects of sonication on the extraction of free-amino acids from moromi and application to the laboratory scale rapid fermentation of soy sauce[J]. Food Chemistry, 2017, 215:200-208.
[5] 刘晓艳,丘泰球,刘石生,等. 超声对细胞膜通透性的影响及应用[J]. 应用声学, 2002, 21(2):26-29.
[6] 吕园丽,吴胜举,马艳,等. 超声对细胞膜通透性影响的研究现状[J]. 菏泽学院学报, 2007, 29(5):67-69.
[7] 王武,杨海鳞,吕霞付,等.超声波在生物发酵工程中的应用[J]. 无锡轻工大学学报, 2002(3):322-326.
[8] 戴传云,王伯初. 低功率超声波对微生物发酵的影响[J]. 重庆大学学报, 2003, 26(2):15.
[9] RAZA A, LI F, XU X, et al. Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology[J]. International Journal of Biological Macromolecules, 2017, 94(Pt A):335-344.
[10] 卢群,丘泰球,刘晓艳,等. 超声物理效应影响细胞膜通透性的研究[J]. 声学技术, 2004, 23(z2):000047-48.
[11] SHI L, WANG B, YANG Y, et al. Application of low intensity ultrasound to biotechnology[J]. Journal of Chongqing University, 2002, 25:148-153.
[12] 洪晴悦,张玉. 超声波辅助提取牡丹籽毛油的工艺优化及脂肪酸组成分析[J]. 食品与发酵工业, 2018,44(3):159-164.
[13] 高大维,雷德柱. 多波形超声波辐照对啤酒酵母细胞生长的影响[J]. 华南理工大学学报(自然科学版), 2000, 28(7):36-39.
[14] 李柏林,储炬,李友荣,等. 在线超声波处理对庆大霉素生物合成的影响[J]. 中国抗生素杂志, 1997(4):250-253.
[15] 孟祥勇,冯东阳,毛健,等. 循环超声波辅助黄酒后发酵风味物质的变化分析[J]. 中国农业科技导报, 2015, 17(5):142-150.
[16] WANG Z, LIU F, HAILE M A, et al. Ultrasound-assisted alcohol fermentation technology[J]. Liquor-Making Science & Technology, 2016,18(3):56-67.
[17] 张金玲. 基于生物参数在线检测的谷氨酸发酵及其动力学研究[D]. 济南:齐鲁工业大学, 2014.
[18] 郜培. 基于代谢网络模型的谷氨酸发酵在线优化与控制的研究[D]. 无锡:江南大学, 2006.
[19] 陈宁. 氨基酸工艺学(高校教材)[M]. 北京:中国轻工业出版社, 2007.
[20] 白长胜,韩隽,梁恒宇,等. 谷氨酸发酵过程中溶氧控制条件优化[J]. 食品工业, 2015(4):179-181.
[21] LEE Y J, JANG J W, KIM K J, et al. TCA cycle‐independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae[J].Yeast, 2011, 28(2):153-166.
[22] 付丙勇. 谷氨酸发酵过程中乳酸的生成规律与策略[J]. 发酵科技通讯, 2010, 39(3):45-47.
Outlines

/