Effects of NaCl-CaCl2 treatment on phenolics accumulation and antioxidant capacities of soybean sprouts

  • YU Qian ,
  • MA Yan ,
  • FAN Danjun ,
  • GONG Ruyi ,
  • WANG Pei ,
  • GU Zhenxin ,
  • YANG Runqiang
Expand
  • (College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China)

Received date: 2018-01-20

  Online published: 2019-02-01

Abstract

In order to investigate whether chloride salt affects phenolics contents during soybean germination, effects of exogenous NaCl (1.5 mmol/L), CaCl2 (6 mmol/L), and NaCl combined CaCl2 (1.5 mmol/L NaCl+6 mmol/L CaCl2) treatments on the sprouts growth index, total phenolics contents, phenolic acids contents, and antioxidant capacity were studied. The results showed that NaCl and CaCl2 treatment alone could promote the soybean sprouts growth, and the effect was more obvious under NaCl-CaCl2 treatment. Simultaneously, the contents of total phenolics and phenolic acids in soybean sprouts increased significantly under NaCl-CaCl2 treatment. DPPH and ABTS radical scavenging activities also improved after NaCl-CaCl2 treatment. This indicated that NaCl-CaCl2 treatment plays an important role in enhancing the contents of phenolics and improving the antioxidant capacities of soybean sprouts.

Cite this article

YU Qian , MA Yan , FAN Danjun , GONG Ruyi , WANG Pei , GU Zhenxin , YANG Runqiang . Effects of NaCl-CaCl2 treatment on phenolics accumulation and antioxidant capacities of soybean sprouts[J]. Food and Fermentation Industries, 2019 , 45(1) : 152 -158 . DOI: 10.13995/j.cnki.11-1802/ts.016869

References

[1] TERPINC P, ABRAMOVICˇ H. A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids[J]. Food Chemistry, 2010, 121: 366-371.<br /> [2] PIETTA P, MINOGGIO M, BRAMATI L. Plant polyphenols: structure, occurrence and bioactivity. studies in natural[J]. Products Chemistry, 2003. 28(3): 257-312.<br /> [3] 陈志杰,吴嘉琪,马燕,等. 植物食品原料中酚酸的生物合成与调控及其生物活性研究进展[J]. 食品科学, 2017, 39(7):1-11.<br /> [4] CUEVA C, MORENO-ARRIBAS M V, MART NLVAREZ P J, et al. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria[J]. Research in Microbiology, 2010, 161(5): 372-382.<br /> [5] WANG L-Y, TANG Y-P, LIU X, et al. Effects of ferulic acid on antioxidant activity in <i>Angelicae sinensis</i> Radix, <i>Chuanxiong rhizoma</i>, and their combination[J]. Chinese Journal of Natural Medicines, 2015, 13(6): 401-408.<br /> [6] WENG C-J, YEN G-C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives[J]. Cancer Treatment Reviews, 2012, 38(1): 76-87.<br /> [7] 代沙. 紫苏叶抗氧化物质提取、含量测定及抗氧化活性研究[D]. 雅安:四川农业大学, 2013: 57-59.<br /> [8] XU L, ZENG Y, LONG G, et al. The Antioxidant activities and their relationship with the relative polyphenols and flavonols contents of several flowers extracts[J]. Chinese Wild Plant Resources, 2005, 24(1): 51-54.<br /> [9] LUO X, WANG Y, LI Q, et al. Accumulating mechanism of γ-aminobutyric acid in soybean (<i>Glycine max</i> L.) during germination[J]. International Journal of Food Science & Technology,2018, 53(1): 106-111.<br /> [10] WANG X, YANG R, JIN X, et al. Effect of supplemental Ca<sup>2+</sup> on yield and quality characteristics of soybean sprouts[J]. Scientia Horticulturae, 2016, 198: 352-362.<br /> [11] KAYEMBE N C, RENSBURG C J V. Germination as a processing technique for soybeans in small-scale farming[J]. South African Journal of Animal Science, 2013, 43(2): 167-173.<br /> [12] HUANG X, CAI W, XU B. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (<i>Glycine max</i> L.) and mung bean (<i>Vigna radiata</i> L.) with germination time[J]. Food Chemistry, 2014, 143(2): 268-276.<br /> [13] JIAO C, YANG R, ZHOU Y, et al. Nitric oxide mediates isoflavone accumulation and the antioxidant system enhancement in soybean sprouts[J]. Food Chemistry, 2016, 204: 373-380.<br /> [14] YANG R, FENG L, WANG S, et al. Accumulation of γ-aminobutyric acid in soybean by hypoxia germination and freeze-thawing incubation[J]. Journal of the Science of Food & Agriculture, 2016, 96(6): 2 090-2 096.<br /> [15] SWIGONSKA S, AMAROWICZ R, KR L A, et al. Influence of abiotic stress during soybean germination followed by recovery on the phenolic compounds of radicles and their antioxidant capacity[J]. Acta Societatis Botanicorum Poloniae, 2014, 83(3): 209-218.<br /> [16] CHEN Z, YU L, WANG X, et al. Changes of phenolic profiles and antioxidant activity in canaryseed (<i>Phalaris canariensis</i> L.) during germination[J]. Food Chemistry, 2016, 194: 608-618.<br /> [17] YANG R, HUI Q, ZHANG W, et al. Effects of CaCl<sub>2</sub> on the metabolism of glucosinolates and the formation of isothiocyanates as well as the antioxidant capacity of broccoli sprouts[J]. Journal of Functional Foods, 2016(24): 156-163.<br /> [18] ZAHEDI S M, NABIPOUR M, AZIZI M, et al. Effect of kinds of salt and its different levels on seed germination and growth of basil plant[J]. World Applied Sciences Journal, 2011, 15(7): 1 039-1 045.<br /> [19] 季延海,于平彬,武占会,等. 低浓度NaCl对水培韭菜生长、产量及品质的影响[J]. 中国生态农业学报, 2015, 23(5): 628-633.<br /> [20] 周熠玮,吴冠雄,肖承,等. 低浓度NaCl对荞麦芽苗菜生长和品质的影响[J]. 蔬菜, 2016(7): 6-7.<br /> [21] 周峰,华春. 低浓度NaCl对菠菜生长的效应[J]. 西北农业学报, 2008, 17(6): 127-129.<br /> [22] 李华,贺洪军,朱金英,等. 盐胁迫下氯化钙对黄瓜幼苗生长的影响[J]. 山东农业科学, 2010(8): 46-48.<br /> [23] 戴高兴,彭克勤,皮灿辉. 钙对植物耐盐性的影响[J]. 中国农学通报, 2003, 19(3): 97-101.<br /> [24] VAN H P. Phenolic compounds of cereals and their antioxidant capacity[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(1): 25.<br /> [25] KAFUI KWAMI ADOM, RUI HAI LIU. Antioxidant activity of grains[J]. Journal of Agricultural & Food Chemistry, 2002, 50(21): 6 182-6 187.<br /> [26] KAUKOVIRTA-NORJA A, WILHELNSON A, POUTANEN K. Germination: A means to improve the functionality of oat[J]. Agricultural & Food Science, 2004, 13(1): 100-112.<br /> [27] AMAROWICZ R, WEIDNER S. Content of phenolic acids in rye caryopses determined using DAD-HPLC method[J]. Journal of Food Science, 2001, 19(6): 201-205.<br /> [28] 付晓燕,吴茜,李书艺,等. 燕麦发芽前后酚类物质的组成变化及结构鉴定[J]. 中国农业科学, 2013, 46(17): 3 669-3 679.<br /> [29] OLFA B, HELA M, TARCHOUN I, et al. Salt effect on phenolics and antioxidant activities of Tunisian and Canadian sweet marjoram (<i>Origanum majorana</i>, L.) shoots[J]. Journal of the Science of Food & Agriculture, 2013, 93(1): 134-141.<br /> [30] THAMMAPAT P, MEESO N, SIRIAMORNPUN S. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice[J]. Food Chemistry, 2015, 175: 218-224.<br /> [31] LIM J H, PARK K J, KIM B K, et al. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (<i>Fagopyrum esculentum</i> M.) sprout[J]. Food Chemistry, 2012, 135(3): 1 065-1 070.<br /> [32] MARSCHNER H, POSSINGHAM J V. Effect of K<sup>+</sup> and Na<sup>+</sup> on growth of leaf discs of sugar beet and spinach[J]. Zeitschrift Fü Pflanzenphysiologie, 1975, 75(1): 6-16.<br /> [33] HEPLER P K, WINSHIP L J. Calcium at the cell wall-cytoplast interface[J]. Journal of Integrative Plant Biology, 2010. 52(2): 147-160.<br /> [34] HEPLER P K. Calcium: a central regulator of plant growth and development[J]. Plant Cell, 2005, 17(8): 2 142.<br /> [35] CASTANˇEDA P, P REZ L M. Calcium ions promote the response of Citrus limon against fungal elicitors or wounding[J]. Phytochemistry, 1996, 42(3): 595-598.<br /> [36] 关军锋,李广敏. 钙在植物乙烯生成及信号传递中的生理作用[J]. 植物学报, 2000, 17(5): 413-418.<br /> [37] 刘金福,李晓雁,孟蕊. 苦荞发芽过程中促进黄酮合成的因素初探[J]. 食品工业科技, 2006(10): 106-108.
Outlines

/