Analysis of vacuum drying kinetics of rapeseed and analysis of Weibull model

  • ZHANG Xuefeng ,
  • LI Bin ,
  • PENG Guilan ,
  • MENG Guodong ,
  • LUO Chuanwei ,
  • YANG Ling
Expand
  • (College of Engineering and Technology,Southwest University,Chongqing 400715, China)

Received date: 2018-06-05

  Online published: 2019-03-26

Abstract

Weibull distribution function was applied to study the dynamic characteristics of vacuum drying of rapeseed to obtain rapeseed with good germination power and improve their vacuum drying efficiency. The effects of initial moisture content (M) , temperature (T), and vacuum degree (V) on the drying characteristics of rapeseed were investigated under the following conditions: (50±0.5) g loading capacity, M: 16.12%, 18.19%, 20.26%, at 40, 50, 60, 70, and 80 ℃ under different vacuum degree (V) (0.03, 0.04, 0.05, 0.06, 0.07 MPa). The fitting results were evaluated by using coefficient of determination (R2), root mean squared error (RMSE), and reduced chi-square (χ2). The scale parameters (α), shape parameters (β), moisture effective diffusion coefficients (Deff ), calculated diffusion coefficient (Dcal ), and geometric factor (Rg) were analyzed. The results showed that α was negatively correlated with T and V. It was positively correlated with M. β values were below 1, the values of Deff were in a range of 6.051×10-9-2.908×10-8m2/s, and Rg was less than 1. The vacuum drying activation energy (Ea) of rapeseed was 22.369 kJ/mol. T was positively correlated with the average drying rate (r), and it was negatively correlated with the germination rate (g) and the shoot length (l). V was only positively correlated with r. M was positively correlated with the unit energy consumption (e), and negatively correlated with g, l and r.

Key words: rapeseed; vacuum; drying; Weibull; model

Cite this article

ZHANG Xuefeng , LI Bin , PENG Guilan , MENG Guodong , LUO Chuanwei , YANG Ling . Analysis of vacuum drying kinetics of rapeseed and analysis of Weibull model[J]. Food and Fermentation Industries, 2019 , 45(4) : 66 -73 . DOI: 10.13995/j.cnki.11-1802/ts.017963

References

[1] 王汉中. 我国油菜产业发展的历史回顾与展望[J]. 中国油料作物学报, 2010, 32(2): 300-302.
[2] 张芳,程勇,谷铁城,等. 我国油菜种业发展现状及对策建议[J]. 中国农业科技导报, 2011, 13(4): 15-22.
[3] 李兴军,郑亿青,盛岩,等. 油菜籽平衡水分及吸着等热研究[J]. 粮油食品科技, 2013, 21(5): 32-36.
[4] FIGIEL A. Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves andslices[J]. Journal of Food Engineering, 2009, 94(1): 98-104.
[5] FEMANDO W J N, LOW H C, AHMAD A L. Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials: A study on slices of banana,cassava and pumpkin[J]. Engineering Journal of Food, 2011, 102(4): 310-316.
[6] 车刚,李成华,汪春. 蕨菜真空干燥的试验研究[J]. 农业工程学报, 2006(5): 165- 168.
[7] 李辉,林河通,袁芳,等. 荔枝果肉微薄干燥特性与动力学模型[J]. 农业机械学报, 2006, 43(6): 107-112.
[8] DUE L A, HAN J W, KEUM D H. Thin layer drying charecteristics of rapeseed(Brassica napus L.)[J]. Journal of Stored Products Research, 2011, 47(1): 32-38.
[9] JUKIC Z, FONAL J, OSTASZYK A,et al. Convective drying of rapeseed hybrids’seeds[J]. Agriculture Conspectus Scientifics, 2009, 74(3): 1 331-7 768.
[10] BASIRY M,ESEHAGHBEYGI A. Electrohydrodynamic(EHD) drying of rapeseed (Brassica napus L.)[J]. Journal of Electrostatics, 2010, 68(4): 360-363.
[11] 丁超,屠康,杨国峰,等. 响应面法优化油菜籽热风薄层干燥工艺[C]∥中国农业工程学会2011年学术年会论文集, 2011: 1-5.
[12] 杨玲. 甘蓝型油菜籽热风干燥传热传质特性及模型研究[D]. 重庆:西南大学, 2014: 45- 56.
[13] URIBE E, VEGA-GALVEZ A, DI S K, et al. Characteristics of convective drying of pepino fruit (Solanum muricatum Ait.): Application of weibull distribution[J]. Food and Bioprocess Technology, 2011, 4(8): 1 349-1 356.
[14] BANTLE M, KOLSAKER K, EIKEVIK T M. Modification of the Weibull distribution for modeling atmospheric freeze-drying offood[J]. Drying Technology, 2011, 29(10): 1 161-1 169.
[15] 白竣文,王吉亮,肖红伟,等. 基于Weibull分布函数的葡萄干燥过程模拟及应用[J]. 农业工程学报, 2013, 29(16): 278-285.
[16] 张卫鹏,高振江,肖红伟,等. 基于Weibull函数不同干燥方式下的茯苓干燥特性[J]. 农业工程学报, 2015, 31(5): 317-324.
[17] 尹慧敏,聂宇燕,沈瑾,等. 基于Weibull分布函数的马铃薯丁薄层热风干燥特性[J]. 农业工程学报, 2016, 32(17):252-258.
[18] 全国文献工作标准化技术委员会第七分委员会.GB/T5009.3—2010中国标准书号[S]. 北京:中国标准出版社, 2008.
[19] MIRANDA M, VEGA-GALVEZ A, GARCÍA P, et al. Effect of temperature on structural properties of Aloe vera (Aloebarbadensis Miller) gel and Weibull distribution for modelling drying process[J]. Food and Bioproducts Processing, 2010, 88(2): 138-144.
[20] 黎斌,彭桂兰,罗传伟,等. 基于Weibull分布函数的花椒真空干燥动力学特性[J]. 食品与发酵工业, 2017, 43(11): 58-64.
[21] 杨玲,陈建,杨屹立,等. 甘蓝型油菜籽热风干燥特性及其数学模型[J]. 现代食品科技, 2014, 30(8): 144-150.
[22] 张健平,王晓宏,施安峰,等. 布风板结构影响油菜籽流化床干燥特性试验[J]. 农业工程学报, 2016, 32(13): 293-302.
[23] XIAO Hongwei, PANG Changle, WANG Lihong, et al. Drying kinetics and quality of Monukka Seedless grapes dried in an air-impingement jet dryer[J]. Biosystems Engineering, 2010, 105(2): 233-240.
[24] CORZO O, BRACHO N, ALVAREZ C. Weibull model for thin-layer drying of mango slices at different maturity alages[J].Journal of Food processing and Preservation. 2010, 34(6): 993-1 008.
[25] MOHAMED H, YVAN G, RUPLAL C, et al. New coupling model of microwave assisted hot-air drying of a capillary porous agricultural product: Application on soybeans and canola seeds[J]. Applied Thermal Engineering, 2017, 114:931-937.
[26] CAIYUN L, NABIL G, NIKOLAI L, et al. Effects of pulsed electric fields treatment on vacuum drying of potato tissue[J]. LWT-Food Science and Technology, 2018, 95: 289-294.
[27] SADOWASKA J. Drying conditions and processability of dryied rapeseed[J]. Journal of Science of Food and Agriculture. 1996, 72(2): 257-262.
[28] 曾目成. 猕猴桃片新型联合干燥技术研究[D]. 北京:中国农业科学院, 2014: 20-31.
[29] 张玉荣,周显青. 热风和真空干燥玉米的品质与指标筛选[J]. 农业工程学报, 2010, 26(3): 346-352.
[30] 司武剑. 高水分稻谷袋式干燥工艺研究[D]. 南京:南京财经大学, 2016: 23-51.
Outlines

/