Changes in relevant components of mold starter-making Douchi during traditional post-fermentation and their correlations with biogenic amines

  • LIU Min ,
  • ZHANG Renfeng ,
  • CHEN Guangjing ,
  • SONG Jun ,
  • KAN Jianquan
Expand
  • 1(College of Food Scienc, Southwest University, Chongqing 400715)
    2(Jiao Xiang (Chongqing) Agricultural Science and Technology Co., LTD., Chongqing 400715,China)
    3(Cooperative Research Centre for Food Science, Chongqing 400715,China)
    4(Department of Agriculture Storage Fresh-Keeping Quality and Safety Risk Assessment Laboratory, Chongqing 400715,China)

Online published: 2019-03-25

Abstract

Soybean was used as raw material. Mucor racemosus and Aspergillus oryzae 3.042 were individually used to make pure starter to produce Douchi. Changes in related components and their correlations with biogenic amines were determined during traditional post-fermentation process. The results showed that during traditional post-fermentation process, the moisture content of Douchi remained stable. Contents of total acids, amino acid nitrogen, and related free amino acids increased at the beginning and then stabilized, while the pH decreased first and kept stable later. Decarboxylase activity was not detected but a small amount of 4 biogenic amines were detected in the control group. Activities of ornithine decarboxylase and phenylalanine decarboxylase were detected in Aspergillus oryzae group, and biogenic amines types decreased from 4 (apropamine, 2-phenylethylamine, imine and spermine) to 2 (aproamine and 2-phenylethylamine). In the Mucor racemosus group, activities of ornithine decarboxylase and tyrosine decarboxylase were detected, and it contained putrescine, spermidine, and tyramine. Total biogenic amines in Aspergillus and Mucor groups increased by 3.05 and 3.40 times, respectively, but the former content was higher. The correlation analysis showed that there was a weak correlation between phenylalanine and 2-phenylethylamine, while arginine was extremely negatively correlated with spermidine and spermine (P<0.01). Besides, except for moisture content, pH, total acids, and amino acid nitrogen content were significantly correlated with detected biogenic amines (P<0.05).

Cite this article

LIU Min , ZHANG Renfeng , CHEN Guangjing , SONG Jun , KAN Jianquan . Changes in relevant components of mold starter-making Douchi during traditional post-fermentation and their correlations with biogenic amines[J]. Food and Fermentation Industries, 2019 , 45(5) : 51 -60 . DOI: 10.13995/j.cnki.11-1802/ts.018930

References

[1] CHEN T, XIONG S, JIANG S, et al. Molecular identification of microbial community in Chinese Douchi during post-fermentation process[J]. Food Science and Biotechnology, 2011,20(6):1 633-1 638.
[2] YOSHIKAWA Y, CHEN P, ZHANG B, et al. Evaluation of seed chemical quality traits and sensory properties of natto soybean[J]. Food Chemistry, 2014,153(153):186-192.
[3] HE G, HUANG J, LIANG R, et al. Comparing the differences of characteristic flavour between natural maturation and starter culture for Mucor-type Douchi[J]. International Journal of Food Science & Technology, 2016, 51(5):1 252-1 259.
[4] SHAO Y, WANG L, CHEN C, et al. Antioxidant capacity of fermented soybeans and their protective effect on protein oxidation in largemouth bass (Micropterus salmoides) during repeated freezing-thawing (FT) treatments[J]. LWT, 2018, 91:213-221
[5] SPANO G, RUSSO P, LONVAUD-FUNEL A, et al. Biogenic amine in fermented foods[J]. European Journal of Clinical Nutrition, 2010,64(11): 95-100.
[6] LI F J, YIN L J, LU X, et al. Changes in angiotensin I-converting enzyme inhibitory activities during the ripening of douchi (a Chinese traditional soybean product) fermented by various starter cultures[J]. International Journal of Food Properties, 2010,13(3):512-524.
[7] 杨伊磊,青文哲,陈力力. 毛霉型豆豉功能性成分的研究进展[J]. 食品安全质量检测学报, 2014(12):4 004-4 010.
[8] 韩忠安,罗信旭,杨春艳,等. 豆豉中生物胺含量的动态变化研究[J]. 中国酿造, 2016,35(5):60-64.
[9] 韩忠安. 细菌型豆豉生物胺及脱羧酶活性研究[J]. 贵阳:贵州大学,2016:9-10.
[10] 张仁凤,陈光静,杨万明,等. 豆豉发酵常用毛霉和米曲霉菌株产生物胺能力的评价[J]. 食品与发酵工业, 2017,43(9):15-21.
[11] 刘达玉,冯治平,吴士业. 毛霉豆豉产业化工艺及营养价值的研究[J]. 中国调味品, 2003(7):6-9.
[12] 林晓华.曲霉型豆豉的发酵条件及挥发性成分的研究[D]. 南昌:南昌大学, 2013:11-12.
[13] 张雨浩.黑色素快速产生阶段豆豉蛋白水解物参与黑色素形成机制研究[D]. 重庆:西南大学, 2014:13.
[14] 中华人民共和国卫生部. GB 5009.3—2016.食品中水分的测定[S]. 北京:中国标准出版社, 2016.
[15] 中华人民共和国卫生部. GB/T 12456—2008.食品中总酸的测定[S]. 北京:中国标准出版社, 2016.
[16] 中华人民共和国卫生部. GB 5009.235—2016.食品中氨基酸态氮的测定[S]. 北京:中国标准出版社, 2016.
[17] 索化夷,赵欣,骞宇,等. 永川豆豉发酵过程中总糖和氨基酸变化与滋味的形成[J]. 食品科学, 2015,36(21):100-104.
[18] ENDO Y. A simple method for the determination of polyamines and histamine and its application to the assay of ornithine and histidine decarboxylase activities[J]. Methods in Enzymology, 1983,94(6):42-47.
[19] 胡鹏.传统毛霉型豆鼓发酵过程中生物胺的变化及组胺生成机理的初步研究[D].重庆:西南大学, 2014:19.
[20] 中华人民共和国卫生部. GB 5009.208—2016. 食品中生物胺的测定[S]. 北京:中国标准出版社, 2016.
[21] LIU Z F, WEI Y X, ZHANG J J, et al. Changes in biogenic amines during the conventional production of stinky tofu[J]. International Journal of Food Science and Technology, 2011,46(4):687-694.
[22] SHUKLA S, PARK H K, KIM J K, et al. Determination of biogenic amines in Korean traditional fermented soybean paste (Doenjang)[J]. Food & Chemical Toxicology, 2010,48(5):1 191-1 195.
[23] 周绪霞,徐潇颖,韩晓,等. 真菌固态发酵鱼糜过程中蛋白酶活及生化指标的动态变化[J]. 中国食品学报, 2014,14(2):277-282.
[24] 杨伊磊.毛霉型豆豉发酵中酶及主要成分变化的研究[D].长沙:湖南农业大学, 2016:27-29.
[25] 林晓华.曲霉型豆豉的发酵条件及挥发性成分的研究[D].南昌:南昌大学, 2013:14-23.
[26] 张雨浩,马良,周梦柔,等. 永川豆豉发酵过程中蛋白水解作用与黑色素形成关系[J]. 食品科学, 2013,34(19):195-199.
[27] 索化夷,卢露,吴佳敏,等. 永川豆豉在传统发酵过程中基本成分及蛋白酶活性变化[J]. 食品科学, 2011,32(1):177-180.
[28] WANG D, WANG L J, ZHU F X, et al. In vitro and in vivo studies on the antioxidant activities of the aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food)[J]. Food Chemistry, 2008,107(4):1 421-1 428.
[29] 王雪蒙,马良,于玮,等. 豆豉纯种发酵过程中蛋白水解物与黑色素形成的关系[J]. 现代食品科技, 2015,31(8):110-116.
[30] 管泳宇.曲霉型豆豉发酵分析及人工接种发酵研究[D].扬州:扬州大学, 2013:18-19.
[31] 陈清婵.米曲霉发酵豆豉挥发性风味成分及其在加工过程中变化研究[D].武汉:华中农业大学, 2011:85-86.
[32] QIU S, WANG Y, CHENG Y, et al. Reduction of biogenic amines in sufu by ethanol addition during ripening stage[J]. Food Chemistry, 2017, 239:1 244-1 252.
[33] KALAC P, KRAUSOVA P. A review of dietary polyamines: formation, implications for growth and health and occurrence in foods[J]. Food Chemistry, 2005,90(1/2):219-230.
[34] 冉春霞,陈光静. 我国传统发酵肉制品中生物胺的研究进展[J]. 食品与发酵工业, 2017,43(3):285-294.
[35] PEGG A E. Recent advances in the biochemistry of polyamines in eukaryotes[J]. Biochemical Journal, 1986,234(2):249-262.
[36] 陈晨.豆豉功能微生物的筛选与应用[D].长春:吉林大学, 2015:55.
[37] 吴燕燕,陈玉峰,李来好,等. 带鱼腌制加工过程理化指标、微生物和生物胺的动态变化及相关性[J].水产学报, 2015,39(10):1 577-1 586.
[38] LU Y, CHEN X, MEI J, et al. Biogenic amines in Chinese soy sauce[J]. Food Control, 2009,20(6):593-597.
[39] 王颖,邱璠,邢茜,等. 腐乳前酵过程中生物胺含量变化[J]. 食品与发酵工业, 2011,37(12):16-20.
Outlines

/