[1] WILD C P, TURNER P C. The toxicology of aflatoxins as a basis for public health decisions[J]. Mutagenesis, 2002, 17(6):471.
[2] 中华人民共和国卫生部. GB 2761—2017食品中真菌毒素限量[S]. 北京:中国标准出版社, 2017.
[3] COMMISSION REGULATTON (EC) NO 165/2010.
[4] TAHERIMASLAK Z, AMOLI-DIVA M, ALLAHYARY M, et al. Magnetically assisted solid phase extraction using Fe3O4 nanoparticles combined with enhanced spectrofluorimetric detection for aflatoxin M1 determination in milk samples [J]. Analytica Chimica Acta, 2014, 842: 63-69.
[5] MAO Jianfei, LEI Shaorong, LIU Yunhua, et al. Quantification of aflatoxin M1 in raw milk by a core-shell column on a conventional HPLC with large volume injection and step gradient elution [J]. Food Control, 2015,51: 156-162.
[6] 中华人民共和国卫生部. GB 5009.24—2016食品中黄曲霉毒素M族的测定[S]. 北京:中国标准出版社, 2016.
[7] SHUIB N S, MAKAHLEH A, SALHIMI SM, et al. Determination of aflatoxin M1 in milk and dairy products using high performance liquid chromatography-fluorescence with post column photochemical derivazation [J]. Journal of Chromatography A, 2017, 1 510: 51-56.
[8] CAMPONE L, PICCINELLI AL, CELANO R, et al. Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry [J]. Journal of Chromatography A, 2016, 1 428: 212-219.
[9] ANDRADE P D, GOMES DA SILVA J L, CALDAS E D. Simultaneous analysis of aflatoxins B1, B2, G1, G2, M1 and ochratoxin A in breast milk by high-performance liquid chromatography/fluorescence after liquid-liquid extraction with low temperature purification (LLE-LTP) [J]. Journal of Chromatography A, 2013, 1 304: 61-68.
[10] ZHANG Xun, LIU Liqiang, CHEN Xiujin, et al. Immunochromatographic strip development for ultrasensitive analysis of aflatoxin M1[J]. Analytical Methods, 2013, 5(23):6 567.
[11] WU Chenghui, LIU Daofeng, PENG Tao, et al. Development of a one-step immunochromatographic assay with two cutoff values of aflatoxin M1 [J]. Food Control, 2016, 63: 11-14.
[12] 陈曦,侯玉泽,蔡齐超,等. 黄曲霉毒素M1免疫学检测方法研究进展[J]. 中国免疫学杂志, 2015, 31(3): 413-416.
[13] WANG Jingjhih, LIU Biinghui, HSU Yutien, et al. Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk [J]. Food Control, 2011, 22(6): 964-969.
[14] 李平,谢体波,易重任,等. 黄曲霉毒素M1 ELISA试剂盒的检测效果研究[J]. 食品安全质量检测学报, 2015, 6(6): 2 297-2 302.
[15] LEUNG K H, HE Bingyong, YANG Chao, et al. Development of an aptamer-based sensing platform for metal-ions, proteins, and small molecules through terminal deoxynucleotidyl transferase induced G-quadruplex formation [J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24 046-24 052.
[16] CHUNG J, KANG J S, JURNG J S, et al. Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform [J]. Biosensors & Bioelectronics, 2015, 67: 303-308.
[17] QIN Chunyan, GAO Ya, WEN Wei, et al. Visual multiple recognition of protein biomarker based on an array of aptamer modified gold nanoparticles in biocomputing to strip biosensor logic operations [J]. Biosensors & Bioelectronics, 2016,79: 522-530.
[18] SHEN Haijing, WANG Jie, LIU Haoyang, et al. Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition [J]. ACS Applied Materials & Interfaces, 2016, 8(30): 19 371-19 378.
[19] YANG Cheng, WANG Yong, MARTY J L, et al. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator [J]. Biosensors & Bioelectronics, 2011, 26(5):2 724-2 727.
[20] BONEL L, VIDAL J C, DUATO P, et al. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer [J]. Biosensors & Bioelectronics, 2011, 26(7): 3 254-3 259.
[21] GUO Xiaodong, WEN Fang, ZHENG Nan, et al. Development of an ultrasensitive aptasensor for the detection of aflatoxin B1 [J]. Biosensors & Bioelectronics, 2014, 56: 340-344.
[22] WU Shijia, DUAN Nuo, MA Xiaoyuan, et al. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins [J]. Analytical Chemistry, 2012, 84(14): 5 253-6 270.
[23] WANG Quanbo, WANG Wei, LEI Jianping, et al. Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing [J]. Analytical Chemistry, 2013, 85: 12 182-12 188.
[24] SUN Aili, ZHANG Yanfang, SUN Guopeng, et al. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction [J]. Biosensors & Bioelectronics, 2017, 89: 659-665.
[25] SHIM W, MUN H, JOUNG H, et al. Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples [J]. Food Control, 2014, 36(1): 30-35.
[26] WANG Chengquan, QIAN Jing, WANG Kan, et al. Magnetic-fluorescent-targeting multifunctional aptasensor for highly sensitive and one-step rapid detection of ochratoxin A [J]. Biosensors & Bioelectronics, 2015, 68: 783-790.
[27] SHENG Linfeng, REN Jiangtao, MIAO Yuqing, et al. PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer [J]. Biosensors & Bioelectronics, 2011, 26: 3 494-3 499.
[28] ZHANG Ying, ZHENG Bing, ZHU Changfeng, et al. Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexd detection of DNA [J]. Advanced Materials, 2015, 27: 935-939.
[29] TIAN Jingqi, CHENG Ningyan, LIU Qian, et al. Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatlytic evolution of dihydrogen from water under visible light [J]. International Edition Angewandte Chemie, 2015, 54: 5 493-5 497.
[30] ZHANG Libing, GUO Shaojun, DONG Shaojun, et al. Pd nanowires as new biosensing materials for magnified fluorescent detection of nucleic acid [J]. Analytical Chemistry, 2012, 84:3 568-3 573.
[31] QIANG Weibing, LI Wei, LI Xiaoqing, et al. Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules [J]. Chemical Science, 2014, 5: 3 018-3 024.
[32] LEI Haozhi, MI Lijuan, ZHOU Xuejiao, et al. Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion [J]. Nanoscale, 2011, 3: 3 888-3 892.
[33] GUO Zhijun, REN Jiangtao, WANG Jiahai, et al. Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A [J]. Talanta, 2011, 85(5): 2 517-2 521.
[34] LV Lei, LI Donghao, CUI Chengbi, et al. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring [J]. Biosensors & Bioelectronics, 2017, 87: 136-141.
[35] DAI Shaoliang, WU Shijia, DUAN Nuo, et al. A near-infrared magnetic aptasensor for ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles [J]. Talanta, 2016, 158: 246-253.
[36] HU Shuisheng, OUYANG Wwenjun, GUO Longhua, et al. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A [J]. Biosensors & Bioelectronics, 2017, 92: 718-723.
[37] YAO Li, CHEN Yinji, TENG Jun, et al. Integrated platform with magnetic purification and rolling circular amplification for sensitive fluorescent detection of ochratoxin A [J]. Biosensors & Bioelectronics, 2015, 74: 534-538.