[1] JIANG H, YOON S C, ZHUANG H, et al. Tenderness classification of fresh broiler breast fillets using visible and near-infrared hyperspectral imaging[J]. Meat Science, 2018, 139: 82-90.
[2] ANDERSON M J, LONERGAN S M, FEDLER C A, et al. Profile of biochemical traits influencing tenderness of muscles from the beef round[J]. Meat Science, 2012, 91(3):247-254.
[3] HOPKINS D L. Lawrie′s meat science[M]. 8th ed. UK: Woodhead Publishing, 2017: 357-381.
[4] WANG J, ABE A. A hybrid analytical model of sterilization effect on marine bacteria using microbubbles interacting with shock wave[J]. Journal of Marine Science & Technology, 2015, 21(3): 1-11.
[5] YASUDA A, KURAYA E, TOUYAMA A, et al. Underwater shockwave pretreatment process for improving carotenoid content and yield of extracted carrot (Daucus carota L.) juice[J]. Journal of Food Engineering, 2017, 211: 15-21.
[6] BOLUMAR T, TOEPFL S. Innovative food processing technologies[M]. New Jersey: Wiley & Sons, 2016: 231-258.
[7] HEINZ V, TOEPFL S. New options for targeted product modification[J]. Fleischwirtschaft International Journal for Meat Production & Meat Processing, 2009, 3: 11-13.
[8] BOLUMAR T, BINDRICH U, TOEPFL S, et al. Effect of electrohydraulic shockwave treatment on tenderness, muscle cathepsin and peptidase activities and microstructure of beef loin steaks from Holstein young bulls[J]. Meat Science, 2014, 98(4): 759-765.
[9] CLAUS J R. Emerging technologies in meat processing[M]. Madison: Department of Animal Sciences, 2016: 171-210.
[10] CLAUS J R, SCHILLING J K, MARRIOTT N G, et al. Tenderization of chicken and turkey breasts with electrically produced hydrodynamic shockwaves[J]. Meat Science, 2001, 58(3): 283-286.
[11] 季潇凯,毛衍伟,张一敏,等. 电刺激对牛肉品质影响研究进展[J]. 食品与发酵工业, 2017,43(11): 244-249.
[12] SORHEIM O, HILDRUM K I. Muscle stretching techniques for improving meat tenderness[J]. Trends in Food Science & Technology, 2002, 13(4):127-135.
[13] TAYLOR J, TOOHEY E S, EDWINA S, et al. SmartStretchTM technology VI. the impact of SmartStretchTM technology on the meat quality of hotboned beef striploin (m.; longissimus lumborum)[J]. Meat Science, 2013, 93(3): 413-419.
[14] NOOR S, RADHAKRISHNAN N S, HUSSAIN K. Emerging trends and technologies adopted for tenderization of meat: A review[J]. International Journal of Biotech Trends and Technology, 2016, 19: 20-25.
[15] 侯旭.吊挂方式和成熟时间对牛肉品质的影响及机理[D].泰安:山东农业大学,2014:8-9.
[16] OBUZ E, AKKAYA L, GOK V, et al. Effects of blade tenderization, aging method and aging time on meat quality characteristics of Longissimus lumborum steaks from cull Holstein cows[J]. Meat Science, 2014, 96(3):1 227-1 232.
[17] WARNER R, HA M, SIKES A, et al. Chapter 15-cooking and novel postmortem treatments to improve meat texture[M]. New Aspects of Meat Quality, 2017: 387-423.
[18] SOLOMON M B, SHARMA M, Patel J R. Nonthermal processing technologies for food [M]. New Jersey: Wiley-Blackwell, 2011, 54 (1): 98-108.
[19] SPANIER A M, BERRY B W, SOLOMON M B. Variation in tenderness of beef strip loins and improvement in tenderness by use of hydrodynamic pressure processing (HDP)[J]. Journal of Muscle Foods, 2010, 11(3): 183-196.
[20] SHARMA M, SHEARER A E H, HOOVER D G, et al. Comparison of hydrostatic and hydrodynamic pressure to inactivate foodborne viruses[J]. Innovative Food Science & Emerging Technologies, 2008, 9(4): 418-422.
[21] BOLUMAR T, MIDDENDORF D, TOEPFL S, et al. High pressure processing of food[M]. New York: Springer, 2016: 509-537.
[22] HA M, DUNSHEA F R, WARNER R D. A meta-analysis of the effects of shockwave and high pressure processing on color and cook loss of fresh meat[J]. Meat Science, 2017, 132: 107-111.
[23] BOWKER B C, EASTRIDGE J S, PAROCZAY E W, et al. Handbook of meat processing[M]. New Jersey: Wiley-Blackwell, 2010: 87-104.
[24] ZUCKERMAN H, BOWKER B C, EASTRIDGE J S, et al. Microstructure alterations in beef intramuscular connective tissue caused by hydrodynamic pressure processing[J]. Meat Science, 2013, 95(3): 603-607.
[25] BOWKER B C, FAHRENHOLZ T M, PAROCZAY E W, et al. Effect of hydrodynamic pressure processing and aging on sarcoplasmic proteins of beef strip lions*[J]. Journal of Muscle Foods, 2008, 19(2): 175-193.
[26] COOPER C. Meat tenderization by means of plasma sparking device: CA, 2255271 A1[P/OL].1998-12-11[2000-06-11].http://www.google.com/patents/CA2255271A1 cl=en.
[27] LONG J, THOMSEN P, WAITS D. Shock wave treatment of meat: US, 7244459 B2[P/OL]. 2007-07-17. http://www.freepatentsonline.com/7244459.html.
[28] TOEPFL S, HEINZ V. Technology reduction of the maturing time achieved tender beef production using electrohydraulic shock waves[J]. Fleischwirtschaft -Frankfurt-, 2011, 91(2): 46-48.
[29] SCHAEFER R B, GALLAGHER J. High efficiency long lifetime sparker sources: US, 6687189[P/OL]. 2002-04-02 [2004-02-03]. http://www.freepatentsonline.com/6687189.html.
[30] SOLOMON M B, LIU M N, PATEL J R, et al. Hydrodynamic pressure processing to improve meat quality and safety[J]. Science & Technology of Food Industry, 2006, 32(2):422-424.
[31] SOLOMON M B, LONG J B, EASTRIDGE J S. The hydrodyne: a new process to improve beef tenderness[J]. Journal of Animal Science, 1997, 75(6): 1 534-1 537.
[32] SOLOMON M B, LIU M N, PATEL J, et al. Tenderness improvement in fresh or frozen/thawed beef steaks treated with hydrodynamic pressure processing[J]. Journal of Muscle Foods, 2008, 19(1):98-109.
[33] WARNER R D, MCDONNELL C K, AED B, et al. Systematic review of emerging and innovative technologies for meat tenderisation[J]. Meat Science, 2017, 132: 72.
[34] BOLUMAR T, ENNEKING M, TOEPFL S, et al. New developments in shockwave technology intended for meat tenderization: Opportunities and challenges. A review[J]. Meat Science, 2013, 95(4):931-939.
[35] YAMASHITA Y, ODA A, HUJII T, et al. The numerical analysis and experiment of shock processing for bouef[J]. International Journal of Multiphysics, 2016, 4(4):329-340.
[36] SOLOMON M B. The callipyge phenomenon: tenderness intervention methods[J]. Journal of Animal Science, 1999, 77 Suppl 2(1):238-242.
[37] SOLOMON M B, BERRY B W. Comparison of two different containers for performing the hydrodynamic pressure process[J]. Animal Science, 2000, 78 Suppl 1: 161.
[38] MEEK K I, DUNCAN S E, MARRIOTT N G, et al. Quality and sensory characteristics of selected post-rigor, early deboned broiler breast meat tenderized using hydrodynamic shockwaves[J]. Poultry Science, 2000, 79(1):126.
[39] BOWKER B C, SCHAEFER R B, GRAPPERHAUS M J, et al. Tenderization of beef loins using a high efficiency sparker[J]. Innovative Food Science & Emerging Technologies, 2011, 12(2): 135-141.
[40] SCHILLING M W, CLAUS J R, MARRIOTT N G, et al. No effect of hydrodynamic shock wave on protein functionality of beef muscle.[J]. Journal of Food Science, 2002, 67(1):335-340.
[41] MOELLER S, WULF D, MEEKER D, et al. Impact of the hydrodyne process on tenderness, microbial load, and sensory characteristics of pork longissimus muscle[J]. Journal of Animal Science, 1999, 77(8):2119-2 123.
[42] SOLOMON M B, CARPENTER C E, SNOWDER G D, et al. A research note tenderizing callipyge lamb with the hydrodyne process and electrical stimulation 1[J]. Journal of Muscle Foods, 1998, 9(3):305-311.
[43] BOWKER B C, CALLAHAN J A, SOLOMON M B. Effects of hydrodynamic pressure processing on the marination and meat quality of turkey breasts[J]. Poultry Science, 2010, 89(8):1 744.
[44] CLAUS J R, SCHILLING J K, MARRIOTT N G, et al. Hydrodynamic shockwave tenderization effects using a cylinder processor on early deboned broiler breasts[J]. Meat Science, 2001, 58(3):287-292.
[45] SOLOMON M. Meat quality improvement: Application of hydrodynamic pressure processing[J]. Einstein, 2013, 11(6): 383-391.
[46] SOLOMON M. Detection and identification of rare audiovisual cues[M]. Berlin: Springer Berlin Heidelberg, 2012:39-46.