Irpex lacteus F036 is an aroma-producing fungus producing high-level cellulase. This study explored the conditions for I. lacteus F036 to produce cellulase by fermentation and the enzymatic properties were subsequently examined. The results showed that the optimal conditions for cellulase production were as follows: peptone as nitrogen source, initial pH of 5.0, and fermented for 4 d. Under this condition, the maximum enzyme activities of FPA, C1, CX, and βG were 2.058, 1.401, 163.982, and 3.079 IU/mL, respectively. Meanwhile, the enzyme activity of CX was remarkably higher than others. The optimal reaction pH and temperatures for all these enzymes were 5.0 and 50 ℃, respectively. Besides, 0.15 mg/mL Fe2+, Co2+, K+, and Ca2+ increased Cx activity by 28.95%, 11.69%, 1.53%, and 1.19%, respectively. In comparison, 0.15 mg/mL Zn2+, Cu2+, Mg2+, and Fe3+ decreased Cx activity by 12.09%, 11.03%, 9.70%, and 6.83%, respectively. In conclusion, I. lacteus F036 is a high Cx cellulase-producing strain, which has a potential value in cellulose degradation by fungal synergistic fermentation.
[1] 杨林丽. 纤维素降解菌筛选及混合菌种纤维素降解能力测定[D]. 杨凌:西北农林科技大学, 2013: 10-11.
[2] 葛飞,石贝杰,唐尧,等. 康氏木霉诱变菌株纤维素酶系的分离纯化与酶学特性研究[J]. 现代食品科技, 2015, 31 (12): 149-155;184.
[3] 苏存生,贺建龙,熊鹏,等. 里氏木霉Rut-C30发酵热水预处理稻草产纤维素酶[J]. 食品与发酵工业, 2016, 42 (10): 14-22.
[4] COUGHLAN M P. The properties of fungal and bacterial cellulases with comment on their production and application[J]. Biotechnology & Genetic Engineering Reviews, 1985, 3 (1): 39-110.
[5] 赵光辉,王成福,李林,等. 利用玉米芯渣产纤维素酶条件的优化[J]. 食品研究与开发, 2012, 33 (6): 178-181.
[6] 邓天福,程梦林,莫建初. 木质纤维素降解酶的应用及前景[J]. 中国农学通报, 2010, 26 (14): 82-85.
[7] 谢响明,孙晓霞,吴玉英,等. 绿色糖单孢菌产木聚糖酶规律及其耐碱耐热性的初步研究[J]. 生命科学研究, 2005, 9 (1): 55-59.
[8] ZHOU J, WANG Y H, CHU J, et al. Identification and purification of the main components of cellulases from amutant strain of Trichoderma viride T 100-14[J]. Bioresour Technol, 2008, 99 (15): 6 826-6 833.
[9] CHANDRA M, KALRA A, SHARMA P K, et al. Optimization of cellulases production by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process[J]. Biomass and Bioenergy, 2010, 34 (5): 805-811.
[10] ANG S K, E.M S, Y A, et al. Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation[J]. Process Biochemistry, 2013, 48 (9): 1 293-1 302.
[11] MARTINS L F, KOLLING D, CAMASSOLA M, et al. Comparison of Penicillium echinulatum and Trichoderma reeseicellulases in relation to their activity against various cellulosic substrates[J]. Bioresour Technol, 2008, 99 (5): 1 417-1 424.
[12] HAN X, SONG W, LIU G, et al. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy[J]. Bioresour Technol, 2017, 227: 155-163.
[13] ZHANG L, YOU T, ZHOU T, et al. Synergistic effect of white-rot fungi and alkaline pretreatments for improving enzymatic hydrolysis of poplar wood[J]. Industrial Crops and Products, 2016, 86: 155-162.
[14] TIRADO-GONZÁLEZ D N, JAUREGUI-RINCÓN J, TIRADO-ESTRADA G G, et al. Production of cellulases and xylanases by white-rot fungi cultured in corn stover media for ruminant feed applications[J]. Animal Feed Science and Technology, 2016, 221: 147-156.
[15] ROUCHES E, HERPOEL-GIMBERT I, STEYER J P, et al. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 179-198.
[16] DOGARIS I, VAKONTIOS G, KALOGERIS E, et al. Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol[J]. Industrial Crops and Products, 2009, 29 (2-3): 404-411.
[17] 魏姣,万学瑞,吴润,等. 产纤维素酶真菌菌株的分离筛选及产酶条件优化[J]. 甘肃农业大学学报, 2016, 51 (2): 8-15.
[18] HENRISSAT B, DRIGUEZ H, VIET C, et al. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose[J]. Nature Biotechnology, 1985, 3 (8): 722-726.
[19] LYND L R, WEIMER P J, ZYL W H V, et al. Microbial cellulose utilization: Fundamentals and biotechnology[J]. Microbiology & Molecular Biology Reviews, 2002, 66 (3): 506-577.
[20] TOMME P, WARREN R A, MILLER R C, et al. Cellulose-binding domains: Classification and properties[J]. Enzyme Degradation of Insoluble Polysaccharides, 1995: 142-163.
[21] 杨建远,杨云仙,汪香琴,等. 一株产香真菌的初步鉴定及其挥发性成分分析[J]. 食品工业科技, 2015, 36 (20): 197-200;205.
[22] 刘沛毅. 不同碳源诱导粗壮脉纹胞菌CGMCC3088 产纤维素酶酶学性质的研究[D]. 南昌:南昌大学, 2014: 22-23.
[23] 陆晨,陈介南,王义强,等. 一株产纤维素酶真菌的筛选及产酶条件优化[J]. 中南林业科技大学学报, 2012, 32 (6): 118-122;127.
[24] 赵连娣,孟顺利,史兆国,等. 绿色木霉液态发酵产纤维素酶条件的优化[J]. 浙江农业学报, 2015, 27 (3): 442-447.
[25] 曾青兰,洪玉枝,刘子铎,等. 纤维素降解菌Gibberella fujikuroi产酶条件的优化[J]. 华中农业大学学报, 2008, 27 (3): 391-393.
[26] 冯炘,宋文华,王丹. 粗糙脉孢菌(Neurosporacrassa)产纤维素酶发酵条件研究[J]. 食品科学, 2005, 26 (1): 67-70.
[27] 宋贤冲,唐健,邓小军,等. 产纤维素酶真菌的分离筛选鉴定及其酶学性质分析[J]. 基因组学与应用生物学, 2013, 32 (3): 372-378.
[28] 甄静,王继雯,谢宝恩,等. 一株纤维素降解真菌的筛选、鉴定及酶学性质分析[J]. 微生物学通报, 2011, 38 (5): 709-714.
[29] 黄春凯,左小明,王红蕾,等. 一株产纤维素酶菌株的分离、鉴定及产酶特性[J]. 微生物学通报, 2015, 42 (4): 646-653.
[30] 韩愈杰,魏萌吴,国江. 秸秆纤维素降解真菌的筛选、鉴定及产酶条件的优化[J]. 饲料工业, 2014, 35 (11): 13-17.
[31] 韩树英,池玉杰,薛煜. 一株褐腐真菌产纤维素酶活力的分析[J]. 安徽农业科学, 2014, 42 (16): 4 953-4 955;4 959.
[32] 邹潇潇,易子霆,孙前光,等. 纤维素降解真菌DF14101的筛选与鉴定[J]. 微生物学杂志, 2016, 6 (36): 68-72.
[33] 赵萍,夏文旭,郭健,等. 一株玉米秸秆纤维素分解菌株的分离鉴定及酶学性质[J]. 微生物学通报, 2016, 43 (5): 991-997.
[34] 梁翠谊,许敬亮,袁振宏,等. β-葡萄糖苷酶高产菌株及其应用研究[J]中山大学学报(自然科学版), 2013, 52 (1): 118-122;129.
[35] 聂志强. 产纤维素酶真菌的筛选及其酶学性质的研究[J]. 中国酿造, 2009 (3): 81-83.
[36] 刘宗林,彭义交,胡阿伟. 一株纤维素酶酶学特性的研究[J]. 食品科学, 2003 (3): 32-35.
[37] 王金成. Fe-Mn-Mg离子对稻草秸秆酶解糖化的影响[D]. 重庆:重庆大学, 2015: 29-30.
[38] 韩龙,石家骥,石磊,等. 一株耐冷玫红假裸囊菌HD1031的鉴定及其所产纤维素酶的研究[J]. 微生物学通报, 2013, 40 (6): 928-938.