Three-phase partitioning for efficient extraction and separation of polysaccharides from Spriulina platensis and its structural characterization

  • LUO Guanghong ,
  • MA Minghui ,
  • ZHANG Xifeng ,
  • YANG Shenghui ,
  • WANG Danxia ,
  • CHEN Tianren
Expand
  • 1(Gansu Innovation Technology Innovation Center for Microalgae, Hexi University, Zhangye 734000, China)
    2 (Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Zhangye 734000, China)
    3 (College of Agriculture and Biotechnology, Hexi University, Zhangye 734000, China)

Received date: 2018-05-16

  Online published: 2019-04-18

Abstract

Three-phase partitioning (TPP), which is a simple, efficient, and green bioseparation technique, was used to extract and separate polysaccharides from Spriulina platensis (PSP). The effect of mass fraction of (NH4)2SO4, amount of t-butanol, pH, temperature, and extraction time on the yield of PSP were studied. The structural feature of extracted PSP were also analyzed. The optimal parameters with a high yield of (9.25±0.42)% were as follows: mass fraction of (NH4)2SO4, 20.0%; amount of t-butanol, 15 mL; pH 7.0; temperature, 35 ℃; and extraction time, 30 min. The results of IR showed that PSP had the characteristic absorption peaks of polysaccharide, UV wavelength scanning result showed that PSP do not contain protein and nucleic acids. The weight average molecular of PSP determined by gel permeation chromatography can reach 3.597×104, which is composed of Rhamnose, mannose, and glucose in a molar ratio of 5.14:5.78:81.37, respectively. Hence, TPP was an excellent efficient to concurrent extraction and purification polysaccharides.

Cite this article

LUO Guanghong , MA Minghui , ZHANG Xifeng , YANG Shenghui , WANG Danxia , CHEN Tianren . Three-phase partitioning for efficient extraction and separation of polysaccharides from Spriulina platensis and its structural characterization[J]. Food and Fermentation Industries, 2019 , 45(6) : 147 -152 . DOI: 10.13995/j.cnki.11-1802/ts.017786

References

[1] CHEN Hsiaowei, YANG Tsungshi, CHEN Maojing, et al. Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas[J]. Process Biochemistry, 2014, 49(8): 1 337-1 344.
[2] ESTRADA J E P, BESCÓS P B, DEL FRESNO A M V. Antioxidant activity of different fractions of Spirulina platensis protean extract[J]. Il Farmaco, 2001, 56(5-7): 497-500.
[3] KURD F, SAMAVATI V. Water soluble polysaccharides from Spirulina platensis: Extraction and in vitro anti-cancer activity[J]. International Journal of Biological Macromolecules, 2015, 74: 498-506.
[4] CHAIKLAHAN R, CHIRASUWAN N, TRIRATANA P, et al. Polysaccharide extraction from Spirulina sp. and its antioxidant capacity[J]. International Journal of Biological Macromolecules, 2013, 58(7):73-78.
[5] PARAGES M L, RICO R M, ABDALA-DÍAZ R T, et al. Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF-α in RAW macrophages[J]. Journal of Applied Phycology, 2012, 24(6): 1 537-1 546.
[6] YANG Lingling, WANG Yao, ZHOU Qingjun, et al. Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization[J]. Molecular Vision, 2009, 15: 1 951-1 961.
[7] GRAWISH M E. Effects of Spirulina platensis extract on Syrian hamstercheek pouch mucosa painted with 7,12-dimethylbenz [a]anthracene[J].Oral Oncology, 2008, 44(10): 956-962.
[8] YANG Liqun, ZHANG Liming. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources[J]. Carbohydrate Polymers, 2009,76(3): 349-361.
[9] YANG Weifang, WANG Ying, LI Xiuping, et al. Purification and structural characterization of Chinese yam polysaccharide and its activities[J]. Carbohydrate Polymers, 2015,117: 1 021-1 027.
[10] YU Ping, SUN Haisen. Purification of a fucoidan from kelp polysaccharide and its inhibitory kinetics for tyrosinase[J].Carbohydrate Polymers, 2014,99: 278-283.
[11] YADAV N, GUPTA M N, KHARE S K. Three phase partitioning and spectroscopic characterization of bioactive constituent from halophilic Bacillus subtilis EMB M15[J]. Bioresource Technology, 2017, 242: 283-286.
[12] SHARMA A, GUPTA M N. Three phase partitioning as a large-scale separation method for purification of a wheat germ bifunctional protease/amylase inhibitor[J]. Process Biochemistry, 2001, 37(2): 193-196.
[13] YAN Jingkun, WANG Yaoyao, QIU Weiyi, et al. Three-phase partitioning as an elegant and versatile platform applied to nonchromatographic bioseparation processes[J]. Critical Reviews in Food Science and Nutrition, 2017, 57: 2 416-2 431.
[14] PANADARE D C, RATHOD V K. Three phase partitioning for extraction of oil: A review[J]. Trends in Food Science & Technology, 2017, 68: 145-151.
[15] KULKARNI V M, RATHOD V K. Extraction of mangiferin from Mangifera indica leaves using three phase partitioning coupled with ultrasound[J]. Industrial Crops and Products, 2014, 52: 292-297.
[16] SUI Na, HUANG Kun, LIN Jieyuan, et al. Removal of Al, Fe and Si from complex rare-earth leach solution: A three-liquid-phase partitioning approach[J]. Separation and Purification Technology, 2014, 127: 97-106.
[17] VETAL M D, RATHOD V K. Three phase partitioning a novel technique for purification of peroxidase from orange peels (Citrus sinenses)[J]. Food and Bioproducts Processing, 2015, 94: 284-289.
[18] 李会端,秦志玉.碱液冷提法提取程海螺旋藻中的多糖[J].江苏农业科学, 2014, 42(6): 255-257.
[19] 贲永光,钟红茂,李康,等.超声辅助提取螺旋藻多糖的实验研究[J].中成药, 2011, 33(6): 1 078-1 080.
[20] 张文雄,覃海错.螺旋藻粗多糖提取工艺研究[J].广西化工, 1999, 28(1): 11-14.
[21] 王以斌,梁强,何碧娟,等.螺旋藻多糖酶解辅助超声波提取工艺的优化[J].现代农业科技, 2009(8): 234-235.
[22] 范嘉龙,马丽苹,叶红,等.苦丁冬青苦丁茶多糖的单糖组成分析[J].食品科学, 2013, 34(11): 72-76.
[23] CHAIWUT P, PINTATHONG P, RAWDKUEN S. Extraction and three-phase partitioning behavior of proteases from papaya peels[J]. Process Biochemistry, 2010, 45(7): 1 172-1 175.
[24] SAXENA L, IYER B K, ANANTHANARAYAN L. Three phase partitioning as a novel method for purification of ragi (Eleusine coracana) bifunctional amylase/protease inhibitor[J]. Process Biochemistry, 2007, 42(3): 491-495.
[25] 刘杨,冯元琦,陈美欣,等.乙醇/硫酸铵双水相体系萃取螺旋藻多糖的研究[J].化学研究与应用, 2012, 24(12): 1 781-1 785.
[26] DENNISON C, LOVRIEN R. Three phase partitioning: concentration and purification of proteins[J]. Protein Expression and Purification, 1997, 11(2): 149-161.
Outlines

/