In order to explore changes in microstructure and physicochemical properties of beef under different vacuum-low temperature cooking conditions, sirloin steak was heated at 60 ℃, 65 ℃, 70 ℃, and 75 ℃ under vacuum condition and compared with that cooked at 100 ℃ for 165-170 min. The microstructure, texture characteristics, tenderness, color, pH, water holding capacity (WHC), and digestion characteristics of each beef sample were determined and analyzed. The results showed that the quality of vacuum-low temperature cooked beef significantly improved. The microstructure of muscle tissue was loose and muscle cells distributed closely at 65 ℃. With increasing cooking temperature, the hardness, elasticity, chewiness, and shearing force of beef increased first and then decreased. Beef heated at 60 ℃and 65 ℃ had good texture characteristics and tenderness. Moreover, vacuum-low temperature cooking had significant effects on color, pH, and WHC of beef (P<0.05). Beef heated at 65 ℃ had good color and WHC, and its in vitro protein digestibility was much higher than those heated at 75 ℃ and 100 ℃. In conclusion, 65 ℃ was recommended as a superior vacuum-low temperature cooking environment.
MENG Xiangren
,
WANG Hengpeng
,
XIE Jing
,
TU Mingliang
,
WU Peng
,
CHEN Shengshu
,
Gao Ziwu
,
LI Wu
,
SHI Haoran
. Effects of vacuum-low temperature cooking on microstructure andphysicochemical properties of beef[J]. Food and Fermentation Industries, 2019
, 45(9)
: 152
-158
.
DOI: 10.13995/j.cnki.11-1802/ts.018844
[1] SCHELLEKENS M. New research issues in sous-vide cooking[J]. Trends in Food Science and Technology, 1996, 7(8): 256-262.
[2] MASSIMILIANO R, CHIARA D, FEDERICA M, et al. Physicochemical and microbiological quality of sous-vide-processed carrots and brussels sprouts[J]. Food Bioprocess Technology, 2013, 18(6): 3 076-3 087.
[3] 王笑丹, 刘爱阳,孙永海,等. 基于自组织神经网络模型与质构特性的牛肉嫩度评定方法[J]. 农业工程学报, 2015, 31(18):262-268.
[4] BALDWIN D E. Sous vide cooking: a review[J]. International Journal of Gastronomy and Food Science, 2012, 1(1): 15-30.
[5] FAUSTINO H. Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections[J]. Cell Biology, 1996, 106: 587-592.
[6] ZHOU YANZI, CHEN CONGGUI, CHEN XING, et al. Contribution of three ionic types of polysaccharides to the thermal gelling properties of chicken breast myosin[J]. Journal of Agricultural and Food Chemistry, 2014, 62(12): 2 655-2 662.
[7] 杨万君. 三种品牌酱排骨中蛋白质体外消化研究[J]. 肉类工业, 2017(3): 17-23.
[8] ESCUDERO E, SENTANDREU MA, TOLDRA F. Characterization of peptides released by in vitro digestion of pork meat[J]. Journal of Agricultural and Food Chemistry, 2010, 58(8): 5 160-5 165.
[9] 王水清. 乌珠穆沁羊生长过程中肌纤维结构特性变化研究[D]. 呼和浩特:内蒙古农业大学, 2012.
[10] 秦召, 康相涛,李国喜. 肌纤维组织学特性与肌肉品质的关系[J]. 安徽农业科学, 2006, 34(22): 5 872-5 873.
[11] 张立彦, 吴兵,包丽坤. 加热对三黄鸡胸肉嫩度、质构及微观结构的影响[J]. 华南理工大学学报, 2012, 40(8): 116-121.
[12] TORNBERG E. Effects of heat on meat proteins-Implications on structure and quality of meat products[J]. Meat Science, 2005, 70(3): 493-508.
[13] 李里特. 食品物性学[M]. 北京:中国农业出版社, 1998: 107-109.
[14] 张馨木. 质构仪测定冷鲜肉新鲜度方法的研究[D]. 吉林:吉林大学, 2012.
[15] 夏军军, 李洪军,贺稚非,等. 不同腌制方式对牛肉品质特性的影响[J]. 西南大学学报(自然科学版), 2016, 38(2): 12-19.
[16] 张志清, 熊善波,李远志,等. 工程重组米质构测定(TPA)与感官评价相关分析[J].中国粮油学报, 2011, 26(10): 1-5.
[17] HILDRUM K I, RØDBOTTEN R, HØY M, et al. Classification of different bovine muscles according to sensory characteristics and Warner Bratzler shear force[J]. Meat Science, 2009, 83(2): 302-307.
[18] HUANG F, HUANG M, XU X, et al. Influence of heat on protein degradation, ultrastructure and eating quality indicators of pork[J]. Journal of the Science of Food & Agriculture, 2011, 91(3): 443-448.
[19] CHRISTENSEN M, PURSLOW P P, LARSEN L M. The effect of cooking temperature on mechanical properties of whole meat, single muscle fibres and perimysial connective tissue[J]. Meat Science, 2000, 55(3): 301-307.
[20] PALKA K. Changes in intramuscular connective tissue and collagen solubility of bovine M. semitendinosus during retorting[J]. Meat Science, 1999, 53(3): 189-194.
[21] 孙红霞, 黄峰,丁振江,等. 不同加热条件下牛肉嫩度和保水性的变化及机理[J]. 食品科学, 2018, 39(1): 84-90.
[22] ENGCHUAN W, JITTANIT W, GARNJANAGOONCHORN W. The ohmic heating of meatball: Modeling and quality determination[J]. Innovative Food Science & Emerging Technologies, 2014, 23: 121-130.
[23] 郎玉苗, 谢鹏,李敬,等. 熟制温度及切割方式对牛排食用品质的影响[J]. 农业工程学报, 2015, 31(1): 317-323.
[24] 李梦熹, 黄斯,关荣发,等. 牛肉品质性状与感官指标关系的研究[J]. 畜牧与饲料科学, 2011, 32(7): 91-93.
[25] MA HANJUN, LEDWARD D A. High pressure / thermal treatment on the texture of beef muscle[J]. Meat Science, 2004, 68: 347-355.
[26] JOSEPH J K, AWOSANYA B, et al. The effects of endpoint internal cooking temperature on the meat quality attributes of selected Nigerian poultry meats[J]. Food Quality and Preference, 1997(8): 57-61.
[27] 李鸣, 邢通,王虎虎,等. 加工工艺对白切鸡品质及微生物状况的影响[J]. 食品科学, 2018, 39(11): 32-38.
[28] BAX ML, SAYD T, AUBry L, et al. Muscle composition slightly affects in vitro digestion of aged and cooked meat: Identification of associated proteomic markers[J]. Food Chemistry, 2013, 136(3): 1 249-1 262.
[29] 王君翠. 微波和水浴低温加热对牛肉品质的影响研究[D]. 广东:华南理工大学, 2016.
[30] PROMEYRAT A, BAX ML, TRAORE S et al. Changed dynamics in myofibrillar protein aggregation as a consequence of heating time and temperature[J]. Meat Science, 2010, 85(4): 625-631.
[31] SIYING W, GUANGHONG Z, LI L, et al. Effect of Cooking on in vitro digestion of pork proteins:A peptidomic perspective[J]. Journal of Agricultural and Food Chemistry, 2015, 63(1): 250-261.