Purification, structural characteristics, and in vitro antioxidant activities ofpolysaccharides ARP from a wild Amauroderma rugosum mycelium

  • WU Yan ,
  • SHEN Liqun ,
  • ZHU Hua
Expand
  • 1(Xingyi Normal University for Nationalities, Xingyi 562400, China)
    2 (College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 550006, China)
    3 (Key Laboratory of Development and Application of Forest Chemicals of Guangxi, Nanning 550006, China)

Received date: 2018-06-25

  Online published: 2019-06-06

Abstract

A wild Amauroderma rugosum was collected from Ceheng, Guizhou. Its crude polysaccharides were extracted from liquid fermentation of isolated mycelium by hot water and ethanol precipitation. The crude polysaccharides were further purified by deproteinization, decoloration, and column chromatography, resulted refined polysaccharides (ARP). The structural characteristics of ARP were elucidated by chromatographic methods. Meanwhile, the antioxidant activities of crude and refined polysaccharides were compared. The results showed that the molecular weight of ARP was 1.86×104 Da. Moreover, IR and NMR chromatograms showed that they had characteristic peaks of polysaccharides. Its monosaccharide composition included rhamnose (Rha), mannose (Man), and galactose (Gal), with a molar ratio of 1∶1.24∶3.51. Furthermore, the mycelium polysaccharides demonstrated excellent antioxidant activities in vitro, and crude polysaccharides exhibited better antioxidative effects. When the concentration of polysaccharides was 1 mg/mL, the total reducing activity of crude polysaccharides was 1.72 times higher than that of the refined one. Both of these two polysaccharides were good at scavenging DPPH· (EC50: 0.05 and 1.15 mg/mL for crude and refined polysaccharides , respectively) and ABTS·(EC50∶0.15 and 1.49 mg/mL for crude and refined polysaccharides , respectively). This research provides scientific basis for exploiting and utilizing polysaccharides from A.rugosum.

Cite this article

WU Yan , SHEN Liqun , ZHU Hua . Purification, structural characteristics, and in vitro antioxidant activities ofpolysaccharides ARP from a wild Amauroderma rugosum mycelium[J]. Food and Fermentation Industries, 2019 , 45(9) : 214 -219 . DOI: 10.13995/j.cnki.11-1802/ts.018120

References

[1] 赵继鼎,张小青.中国真菌志[M].北京:科学出版社,2000:144-148.
[2] 张一帆,谢意珍,杨小兵.假芝功效研究进展[J].食用菌,2018,40(2):1-4.
[3] 谌永蕾,马青云,黄圣卓,等.皱盖假芝子实体的化学成分研究[J].中草药,2016,47(6):881-885.
[4] 黄纪国,韩园园,谢意珍,等.皱盖假芝化学成分分离及其结构鉴定[J].中国食用菌,2016,35(1):42-45.
[5] 张双双. 四种灵芝科真菌和硬柄小皮伞的化学成分及生物活性研究[D].南京:南京农业大学,2015.
[6] 陈爱葵,易广,李爱群.食用菌在提高人体免疫力方面的功效[J].中国食用菌,2004(3):7-9.
[7] 张冬雪,王晓玲,刘高强.灵芝多糖的结构及构效关系[J].食品工业,2015,36(11):258-261.
[8] 肖自添,刘明,何焕清.假芝驯化栽培及其抗氧化活性研究[J].菌物学报,2017,36(3):358-366.
[9] 刘丽,张永军,许长征,等.一种改良的CTAB法提取产多糖真菌DNA[J].中国生物工程杂志,2014,34(5):75-79.
[10] 杨毅,李文燕,郭丽,等.HPGPC联合HPLC-ELSD测定樟芝子实体中多糖分子量、多糖组成和单糖含量[J].中药材,2018(5):1 146-1 148.
[11] 陈传平,吴剑锋,陈乃东.金樱子多糖单糖组成的TMS柱前衍生化/GC-MS研究[J].天然产物研究与开发,2017,29(12):2 063-2 067.
[12] OYAIZU M.Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine[J]. Japanese Journal of Nutrition,1986(44):307-315.
[13] BRAND-WILLIAMS W, CUVELIER M E, BERSET C. Use of a free radical method to evaluate antioxidant activity[J]. LWT-Food Science and Technology, 1995,28(1):25-30.
[14] 钱骅,赵伯涛,陈斌,等.桑黄子实体多糖、黄酮和多酚含量与抗氧化活性相关性[J].食品工业科技,2015,36(12):104-108.
[15] 吴亚林. 几种天然生物活性多糖的化学研究[D].杭州:浙江大学,2007.
[16] 张化朋,张静,南征,等.杏鲍菇多糖WPP2的结构表征及抗肿瘤活性[J].高等学校化学学报,2013,34(10):2 327-2 333.
[17] 宗向坤,朱卫华,赵一洋,等.核磁共振波谱法在双价痢疾多糖结合疫苗中的初步应用[J].中国生物制品学杂志,2015,28(5):531-535.
[18] 王赛贞,丁侃,林树钱,等.赤芝多糖肽GL-PP-3A的分离纯化和结构研究[J].药学学报,2007(10):1 058-1 061.
[19] 牛莉鑫,杨义芳,赵正保.紫芝多糖GS-A-1的结构鉴定与生物活性研究[J].中成药,2012,34(5):968-971.
[20] 崔杰,何正有,毕建军,等.荣保灵芝1号多糖的分离纯化与化学结构初步研究[J].食品科技,2018,43(4):205-211.
[21] 腾海艳,张旭,王博,等.单色云芝多糖的结构研究[J].中国药学杂志,2007(14):1 059-1 062.
[22] 牛莉鑫,杨义芳,赵正保.紫芝多糖GS-A-1的结构鉴定与生物活性研究[J].中成药,2012,34(5):968-971.
Outlines

/