[1] HAN Xuyan, ZHANG Yuhong, NIE Jingqing, et al. Gold nanoparticle based photometric determination of tobramycin by using new specific DNA aptamers[J]. Microchimica Acta, 2018, 185(1):4.
[2] FAROUK F, AZZAZY H M E, NIESSEN W M A. Challenges in the determination of aminoglycoside antibiotics, areview[J]. Analytica Chimica Acta, 2015, 890:21-43.
[3] AHMED S, NING J, CHENG G, et al. Receptor-based screening assays for the detection of antibiotics residues - A review[J]. Talanta, 2017, 166:176.
[4] LI Cui, ZHANG Xiaoying, ZHANG Yaoyao, et al. Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA[J]. Food Chemistry, 2017, 227:48-54.
[5] ARSAND J B, JANK L, MARTINS M T, et al. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry[J]. Talanta, 2016, 154:38-45.
[6] WANG Xinran, YANG Shupeng, LI Yi, et al. Optimization and application of parallel solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and royal jelly[J]. Journal of Chromatography A, 2018, 1542:28-36.
[7] TIAN Yifang, CHEN Guanhua, GUO Lihui, et al. Methodology studies on detection of aminoglycoside residues[J]. Food Analytical Methods, 2015, 8(7):1 842-1 857.
[8] European Commission. Commission Regulation (EC) no. 37/2010[S]. Official Journal of the European Communities, 2010.
[9] 中华人民共和国农业部. 农业部第235号公告动物性食品中兽药最高残留限量[S]. 北京:中国标准出版社, 2002.
[10] ÖDÖMTÖLGYESI, BARTA E, SOHN M, et al. Determination of antimicrobial residues in honey by liquid chromatography tandem mass spectrometry[J]. Food Analytical Methods, 2018(45):1-13.
[11] MORENO-GONZÖLEZ D, LARA F J, JURGOVSK N, et al. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers[J]. Analytica Chimica Acta, 2015, 891: 321-328.
[12] 陈婷, 程古月,王玉莲,等. 基于全细胞生物传感器的抗生素残留检测方法研究进展[J]. 中国兽医学报, 2017, 37(12):2 441-2 448.
[13] 胡宇莉, 何义刚,米自由,等. 分子印迹技术在兽药残留分析中的应用[J]. 动物医学进展, 2011, 32(1):103-106.
[14] YU Xiaowen, YANG Yuping, DIKICI E, et al. Beyond antibodies as binding partners: The role of antibody mimetics in bioanalysis[J]. Annual Review of Analytical Chemistry, 2017, 10: 293-320.
[15] GAUDIN V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin - A comprehensive review[J]. Biosensors & Bioelectronics, 2017, 90:363.
[16] JUSTINO C I L, FREITAS A C, PEREIRA R, et al. Recent developments in recognition elements for chemical sensors and biosensors[J]. Trends in Analytical Chemistry, 2015, 68:2-17.
[17] GROFF K, BROWN J, CLIPPINGER A J. Modern affinity reagents: Recombinant antibodies and aptamers[J]. Biotechnology Advances, 2015, 33(8):1 787-1 798.
[18] 薛璟珂. 基于核酸适配体的多种抗生素同时检测方法的研究[D]. 无锡:江南大学, 2016.
[19] 王叶. 基于核酸适配体探针结合荧光和微流控方法检测食品中抗生素残留研究[D]. 宁波:宁波大学, 2017.
[20] 锡建中, 高宝龙,王建平. 广义新型抗体的研究进展[J]. 黑龙江畜牧兽医, 2014(23):54-56.
[21] 龙芳. 多纳米复合材料增敏印迹电化学传感器的研制及应用[D]. 长春:吉首大学, 2016.
[22] 李翠, 抗庆大霉素禽源单链抗体的筛选及间接竞争ELISA检测方法的建立[D]. 杨凌:西北农林科技大学, 2017.
[23] FERGUSON J P, BAXTER G A, MCEVOY J D G, et al. Detection of streptomycin and dihydrostreptomycin residues in milk, honey and meat samples using an optical biosensor[J]. Analyst, 2002, 127(7): 951-956.
[24] CHEN Yiping, CHEN Yan, ZOU Mingqiang, et al. Immunosensor based on magnetic relaxation switch and biotin-streptavidin system for the detection of Kanamycin in milk[J]. Biosensors & Bioelectronics, 2013, 39(1):112-117.
[25] BRADBURY A, PLÜCKTHUN A. Reproducibility: Standardize antibodies used in research[J]. Nature, 2015,518(7537):27-29.
[26] LI Cui, HE Jinxin, REN Hao, et al. Preparation of a chicken scFv to analyze gentamicin residue in animal derived food products[J]. Analytical chemistry, 2016, 88(7): 4 092-4 098.
[27] XING Yupeng, LIU Chun, ZHOU Xiaohong, et al. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay[J]. Scientific Reports, 2015, 5:8 125.
[28] HA N R, JUNG I P, LA I J,et al. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor[J]. Scientific Reports, 2017, 7:40 305.
[29] LIAN Wenjing, LIU Su, YU Jinghua, et al. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode[J]. Biosensors & Bioelectronics, 2013, 44(23):70-76.
[30] REVERTÉ L, PRIETOSIMÓN B, CAMPÃS M. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review[J]. Analytica Chimica Acta, 2016, 908:8-21.
[31] WEN Wei, YAN Xu, ZHU Chengzhou, et al. Recent advances in electrochemical immunosensors[J]. Sensors, 2017, 17(4):138-156.
[32] 徐伟. 基于复合纳米材料的抗生素电化学适配体传感器的研究[D]. 济南:济南大学, 2015.
[33] 陈丹. 基于功能化纳米金银探针检测农兽药及真菌毒素残留的研究[D]. 镇江:江苏大学, 2017.
[34] 江羚. 基于纳米金颗粒和乳胶微球的卡那霉素免疫分析方法的建立及初步应用[D]. 镇江:江苏大学, 2017.
[35] YU Shujun, WEI Qin, DU Bin, et al. Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet[J]. Biosensors & Bioelectronics, 2013, 48(19):224-229.
[36] YANG Yi, YIN Shuo, LI Yongxin, et al. Application of aptamers in detection and chromatographic purification of antibiotics in different matrices[J]. TrAC Trends in Analytical Chemistry, 2017, 95: 1-22.
[37] ZHANG Yali, ZUO Peng, YE Bangce. A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food[J]. Biosensors & Bioelectronics, 2015, 68:14-19.
[38] SHI Qiaoqiao, HUANG Jie, SUN Yaning, et al. A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay[J]. Microchimica Acta, 2018, 185(2):84.
[39] LI Falan, WANG Xiangyou, SUN Xia, et al. Multiplex electrochemical aptasensor for detecting multiple antibiotics residues based on carbon fiber and mesoporous carbon-gold nanoparticles[J]. Sensors & Actuators B Chemical, 2018, 265:217-226.
[40] CHEN Meng, CHEN Yinji, GAN Ning, et al. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification[J]. Talanta, 2016, 161:867-874.
[41] LI Falan, WANG Xiangyou, SUN Xia, et al. A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA[J]. Analytica Chimica Acta, 2018, 1033: 185-92.
[42] DAPRÀ J, LAURIDSEN L H, NIELSEN A T, et al. Comparative study on aptamers as recognition elements for antibiotics in a label-free all-polymer biosensor[J]. Biosensors & Bioelectronics, 2013, 43(1):315-320.
[43] LIAO Qiegen, WEI Benhua, LUO Linguang. Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes[J]. Microchimica Acta, 2016, 184(2):1-6.
[44] LIU Changbin, LU Chunxia, TANG Zonggui, et al. Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin[J]. Microchimica Acta, 2015, 182(15-16):2 567-2 575.
[45] WANG Ying, WANG Bing, SHEN Jia, et al. Aptamer based bare eye detection of kanamycin by using a liquid crystal film on a glass support[J]. Microchimica Acta, 2017, 184(1):1-7.
[46] MISHRA G K, SHARMA A, BHAND S. Ultrasensitive detection of streptomycin using flow injection analysis-electrochemical quartz crystal nanobalance (FIA-EQCN) biosensor[J]. Biosensors & Bioelectronics, 2015, 67(3):532-539.
[47] BAI Xiaojing, HOU Hui, ZHANG Bailin, et al. Label-free detection of kanamycin using aptamer-based cantilever array sensor[J]. Biosensors & Bioelectronics, 2014, 56(18):112-116.
[48] BENITO-PEÑA E, VALDÉS M G, GLAHN-MARTINEZ B, et al. Fluorescence based fiber optic and planar waveguide biosensors: A review[J]. Analytica Chimica Acta, 2016, 943:17-40.
[49] 申佳. 基于DNA杂交的新型液晶传感器及其应用[D]. 重庆:重庆医科大学, 2017.