[1] 罗积杏,薛建萍,沈寅初.β-氨基丙酸的合成与应用[J].氨基酸和生物资源,2005,27(1):52-55.
[2] 任怡,王彦青,舒宏,等.β-氨基丙酸的合成工艺研究[J].辽宁化工,2006,35(4):187-188.
[3] 楼坚.生物转化法生产β-丙氨酸的研究[D].杭州:浙江工业大学,2006.
[4] SHEN Yan, ZHAO Lianzhen, LI Youran,el al. Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum[J].Biotechnology Letters,2014,36(8):1 681-1 686.
[5] 高丽娟,裘娟萍.L-天冬氨酸脱羧酶研究进展[J].工业微生物,2007, 37(5):54-59.
[6] SONG C W, LEE J, KO Y S, et al.Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid[J].Metabolic Engineering,2015,30(3):121-129.
[7] WILLIAMSON J M,BROWN G M.Purification and properties of L-aspartate α-decarboxylase,an enzyme that catalyzes the formation of β-alanine in Escherichia coli[J].Journal of Biological Chemistry,1979,254(16):8 074-8 082.
[8] LEE B I,SUH S W. Crystal structure of the schiff base intermediate prior to decarboxylation in the catalytic cycle of aspartate α-decarboxylase[J].Journal of Molecular Biology,2004,340(1):1-7.
[9] GOPALAN G, CHOPRA S, RANGANATHAN A, et al. Crystal structure of uncleaved L-aspartate-α-decarboxylase from Mycobacterium tuberculosis[J].Proteins-structure Function & Bioinformatics,2010,65(4):796-802.
[10] CUI W, SHI Z, FANG Y, et al. Significance of Arg3,Arg54,and Tyr58 of L-aspartate α-decarboxylase from Corynebacterium glutamicum,in the process of self-cleavage[J].Biotechnology Letters,2014,36(1):121-126.
[11] 邓思颖,张君丽,蔡真,等.枯草芽胞杆菌L-天冬氨酸α-脱羧酶的酶学性质[J].生物工程学报,2015,31(8):1 184-1 193.
[12] 石增秀,崔文璟,周丽,等.谷氨酸棒杆菌L-天冬氨酸α-脱羧酶基因的克隆及重组酶性质研究[J].生物技术通报,2013(4):110-115.
[13] 陈夏林,李由然,顾正华,等.两种L-天冬氨酸α-脱羧酶的表达与酶学性质分析[J].微生物学通报,2017(10):2 337-2 344.
[14] KWON A R, LEE B I, HAN B W, et al.Crystallization and preliminary X-ray crystallographic analysis of aspartate L-decarboxylase from Helicobacter pylori[J].Acta Crystallographica,2002,58(5):861-863.
[15] SCHMITZBERGER F, KILKENNY M L, LOBLEY C M C, et al. Structural constraints on protein self-processing in L-aspartate-α-decarboxylase[J].Embo Journal,2014,22(23):6 193-6 204.
[16] 高宇.一釜双酶法转化富马酸制备β-丙氨酸催化体系的构建及工艺优化[D].无锡:江南大学,2017.
[17] LIU P,TORRENS-SPENCE M P, DING H, et al.Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases[J].Amino Acids,2013,44(2):391-404.
[18] ARAKANE Y, LOMAKIN J, BEEMAN R W, et al.Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum[J].Journal of Biological Chemistry,2009,284(24):16 584.
[19] MOUSSIAN B.Recent advances in understanding mechanisms of insect cuticle differentiation[J].Insect Biochemistry & Molecular Biology,2010,40(5):363-375.
[20] KRAMER K J,MORGAN T D,HOPKINS T L,et al.Catecholamines and β-alanine in the red flour beetle,Tribolium castaneum:roles in cuticle sclerotization and melanization[J].Insect Biochemistry,1984,14(3):293.
[21] DAI F,LIANG Q,CAO C,et al.Aspartate decarboxylase is required for a normal pupa pigmentation pattern in the silkworm,bombyx mori[J].Scientific Reports,2015,5:10 885.
[22] LIU P,DING H,CHRISTENSEN B M,et al.Cysteine sulfinic acid decarboxylase activity of Aedes aegypti aspartate L-decarboxylase: the structural basis of its substrate selectivity[J].Insect Biochemistry & Molecular Biology,2012,42(6):396-403.
[23] RICHARDSON G,DING H,ROCHELEAU T, et al. An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes[J].Molecular Biology Reports,2010,37(7):3 199-3 205.
[24] BORODINA I, KILDEGAARD K R, JENSEN N B, et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine[J].Metabolic Engineering,2015,27:57-64.
[25] BRADFORD M M. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72(S1-2):248-254.
[26] ARGOS P, ROSSMANN M G, GRAU U M, et al.Thermal stability and protein structure[J].Evolution of Protein Structure & Function,1980,18(25):159-169.
[27] ZHANG X J, BAASE W A, MATTHEWS B W. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent,additive effects on both structure and stability[J].Protein Science,2010,1(6):761-776.
[28] MRABET N T, BROECK A V D, BRANDE I V D, et al. Arginine residues as stabilizing elements in proteins[J].Biochemistry,1992,31(8):2 239.
[29] 叶双双,周丽,周哲敏.定点突变提高苯丙氨酸羟化酶的热稳定性[J].生物工程学报,2016,32(9):1 243-1 254.
[30] JAKOB F, MARTINEZ R, MANDAWE J, et al. Surface charge engineering of a Bacillus gibsonii subtilisin protease[J].Applied Microbiology & Biotechnology,2013,97(15):6 793-6 802.
[31] 黄楠,朱龙宝,周丽,等.鱼腥藻苯丙氨酸脱氨酶的基因克隆、表达及最适反应pH改造[J].微生物学通报,2015,42(7):1 208-1 215.
[32] 王哲.重组大肠杆菌产腈水合酶发酵优化及烟酰胺生产工艺的建立[D].无锡:江南大学,2017.