Using Xinzheng jujubes as experimental material, the effects of different relative humidity (continuous dehumidification, 40%, 50%, 60%) on internal temperature rise, drying time, energy consumption, and sensory quality of jujubes were studied. The jujubes were dried at 35-65 ℃ with constant wind speed (1 m/s) and humidity. The internal temperature of jujube was measured by T-type thermocouple and data acquisition instrument, and the energy consumption during drying was recorded by electric energy meter. The results showed that increasing relative humidity of hot air could increase the internal heating rate of red jujubes and avoid skins hardening. Moreover, the internal moisture migration rate of red jujubes increased, which improved overall drying rate, shortened the drying time and reduced energy consumption during drying. When the relative humidity was 60%, the drying time and energy consumption during the whole stage reduced by 15.38% and 34.78%, respectively, compared against that of continuous dehumidification, and the dried jujube products shrank evenly with bright color. Overall, current research provides a theoretical basis for improving the drying rate and drying quality, as well as for reducing energy consumption when drying jujubes.
[1] 黄哲真. 红枣的营养成分及功用价值[J]. 科技视界, 2014(29):325-325.
[2] 王海新,张学军,鄢金山,等.国内红枣干燥技术的研究现状及发展趋势[J]. 农机化研究, 2015,37(8):249-253.
[3] WOJDYLO A, FIGIEL A, LEGUA P, et al. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method[J]. Food Chemistry, 2016, 207:170-179.
[4] ZOZIO S, SERVENT A, HUBERT O, et al. Changes in antioxidant activity during the ripening of jujube (Ziziphus mauritiana Lamk)[J]. Food Chemistry, 2014, 150(2):448-456.
[5] CHUMROENPHAT T, KHANPROM I, BUTKHUP L. Stability of phytochemicals and antioxidant properties in ginger (Zingiber officinale Roscoe) rhizome with different drying methods[J]. Journal of Herbs Spices & Medicinal Plants, 2011, 17(4):361-374.
[6] DIAMANTE L M, IHNS R, SAVAGE G P, et al. A new mathematical model for thin layer drying of fruits[J]. International Journal of Food Science & Technology, 2010, 45(9):1 956-1 962.
[7] 刘立果, 张学军,孙杰,等. 红枣热风干燥工艺的试验研究[J]. 农机化研究, 2017, 39(3):258-263.
[8] 弋晓康, 吴文福,崔何磊,等. 红枣热风干燥特性的单因素试验研究[J]. 农机化研究, 2012, 34(10):148-151.
[9] 木合塔尔·米吉提,吾尔泥沙·吐尼牙孜,玛依努尔·托乎提. 红枣热风干燥特性的单因素试验分析[J]. 农机化研究, 2018, 40(6):178-182.
[10] 王庆惠, 李忠新,杨劲松,等. 圣女果分段式变温变湿热风干燥特性[J]. 农业工程学报, 2014, 30(3):271-276.
[11] DAI Jianwu, RAO Junquan, WANG Dong, et al. Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves[J]. Drying Technology, 2015, 33(3): 365-376.
[12] KOWALSKI S J, MUSIELAK G, BANASZAK J. Heat and mass transfer during microwave-convective drying[J]. Aiche Journal, 2010, 56(1):24-35.
[13] 中华人民共和国卫生部.GB 5009.3—2016. 食品安全国家标准食品中水分的测定[S]. 北京:中国标准出版社, 2016.
[14] 鲁洁, 孙剑锋,王颉,等. 热风干燥对阜平红枣品质的影响及其数学模型的构建[J]. 食品工业科技, 2013, 34(1):97-102.
[15] 牟国良, 张学军,于蒙杰,等. 我国红枣干燥技术的现状及发展趋势[J]. 中国农机化学报, 2014,35(1):16-21.
[16] 韦玉龙, 于宁,陈恺,等. 热风干制对红枣收缩特性的影响[J]. 食品工业科技, 2014, 35(22):114-118;123.
[17] 鲁洁, 孙剑锋,王颉,等. 热风干燥对阜平红枣品质的影响及其数学模型的构建[J]. 食品工业科技, 2013, 34(1):97-102.
[18] JANJAI S, PRECOPPE M, LAMLERT N, et al. Thin- layer drying of litchi (Litchi chinensis Sonn.)[J]. Food and Bioproducts Processing, 2011, 89(3): 194-201.
[19] 巨浩羽, 张茜,郭秀良,等. 基于监测物料温度的胡萝卜热风干燥相对湿度控制方式[J]. 农业工程学报, 2016, 32(4):269-276.
[20] CURCIO S, AVERSA M, CALABRO V, et al. Simulation of food drying: fem analysis and experimental validation[J]. Journal of Food Engineering, 2008, 87(4): 541-553.
[21] 王汉羊, 刘丹,于海明. 山药微波热风耦合干燥特性及动力学模型[J]. 食品科学, 2018, 39(15):115-121.
[22] 于蒙杰, 张学军,李超新,等. 红枣热风干燥特性的试验研究[J]. 农机化研究, 2014,36(11):176-179.
[23] 李长友. 粮食热风干燥系统火用评价理论研究[J]. 农业工程学报,2012,28(12):1-6.
[24] 巨浩羽, 肖红伟,郑霞,等. 干燥介质相对湿度对胡萝卜片热风干燥特性的影响[J]. 农业工程学报, 2015, 31(16):296-304.
[25] BIALBRZEWSKI I, ZIELINSKA M, MUJUMDAR A S, et al. Heat and mass transfer during drying of a bed of shrinking particles-simulation for carrot cubes dried in a spout-fluid bed drier[J]. International Journal of Heat and Mass Transfer,2008, 51(19/20): 4 704-4 716.
[26] JU Haoyu, ZHANG Qian, MUJUMDAR A S, et al. Hot-air drying kinetics of yam slices under step change in relative humidity[J]. International Journal of Food Engineering, 2016, 12(8):783-792.
[27] 刘照朋. 房式红枣烘房的设计与研究[D]. 郑州:河南农业大学, 2014.