[1] 辛良杰, 李鹏辉, 范玉枝. 中国食物消费随人口结构变化分析[J]. 农业工程学报, 2018, 34(14): 296-302.
[2] ORZECHOWSKI A. Artificial meat? Feasible approach based on the experience from cell culture studies[J]. Journal of Integrative Agriculture, 2015, 14(2): 217-221.
[3] POST M J. Cultured meat from stem cells: Challenges and prospects[J]. Meat Science, 2012, 92(3): 297-301.
[4] BHAT Z F, KUMAR S, FAYAZ H. In vitro meat production: Challenges and benefits over conventional meat production[J]. Journal of Integrative Agriculture, 2015, 14(2): 241-248.
[5] TUOMISTO H L, DE MATTOS M J T. Environmental impacts of cultured meat production[J]. Environmental Science & Technology, 2011, 45(14): 6 117-6 123.
[6] ESHEL G, SHEPON A, MAKOV T, et al. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33): 11 996-12 001.
[7] BRAINARD J. Agencies carve up cultured meat[J]. Science, 2018, 362(6 418): 977.
[8] BOHM I, FERRARI A, WOLL S. Visions of in vitro meat among experts and stakeholders[J]. Nanoethics, 2018, 12(3): 211-224.
[9] ZHANG X X, TAN J P, XU X X, et al. A coordination polymer based magnetic adsorbent material for hemoglobin isolation from human whole blood, highly selective and recoverable[J]. Journal of Solid State Chemistry, 2017, 253: 219-226.
[10] LAYER G, REICHELT J, JAHN D, et al. Structure and function of enzymes in heme biosynthesis[J]. Protein Science, 2010, 19(6): 1 137-1 161.
[11] PRANAWIDJAJA S, CHOI S I, LAY B W, et al. Analysis of heme biosynthetic pathways in a recombinant Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2015, 25(6): 880-886.
[12] ANZALDI L L, SKAAR E P. Overcoming the heme paradox: Heme toxicity and tolerance in bacterial pathogens[J]. Infection and Immunity, 2010, 78(12): 4 977-4 989.
[13] ZHAO X R, CHOI K R, LEE S Y. Metabolic engineering of Escherichia coli for secretory production of free haem[J]. Nature Catalysis, 2018, 1(9): 720-728.
[14] NATARAJAN C, JIANG X B, FAGO A, et al. Expression and purification of recombinant hemoglobin in Escherichia coli[J]. PloS One, 2011, 6(5).
[15] LIU L F, MARTINEZ J L, LIU Z H, et al. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2014, 21: 9-16.
[16] MARTINEZ J L, LIU L F, PETRANOVIC D, et al. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2015, 112(1): 181-188.
[17] JIN Y, HE X Y, ANDOH-KUMI K, et al. Evaluating potential risks of food allergy and toxicity of soy leghemoglobin expressed in Pichia pastoris[J]. Molecular Nutrition & Food Research, 2018, 62(1): 1 700 297.
[18] 张谦益, 臧勇军, 吴洪华, 等. GC/MS法分析牛肉酶解物衍生肉香风味的化学成分[J]. 农产品加工(学刊), 2006(2): 19-21.
[19] YU L G, GAO C, ZENG M M, et al. Effects of raw meat and process procedure on N-epsilon-carboxymethyllysine and N-epsilon-carboxyethyl-lysine formation in meat products[J]. Food Science and Biotechnology, 2016, 25(4): 1 163-1 168.
[20] 刘源, 徐幸莲, 王锡昌, 等. 脂肪对鸭肉风味作用研究[J]. 中国食品学报, 2009, 9(1): 95-100.
[21] VARGAS-BELLO-PEREZ E, LARRAIN R E. Impacts of fat from ruminants' meat on cardiovascular health and possible strategies to alter its lipid composition[J]. Journal of the Science of Food and Agriculture, 2017, 97(7): 1 969-1 978.
[22] RASINSKA E, CZARNIECKA-SKUBINA E, RUTKOWSKA J, et al. Fatty acid profile of meat of seasonally fed slow-growing rabbits[J]. Animal Science Papers and Reports, 2017, 35(3): 265-277.
[23] 杨宓. 啤酒酵母的酶解及猪肉香精的制备[D]. 南京:南京林业大学, 2013.
[24] 沈军卫. 大豆蛋白酶解物制备猪肉香精的研究[D]. 洛阳:河南科技大学, 2010.
[25] 曾茂茂, 李伶俐, 何志勇, 等. 甘氨酸对美拉德反应体系及产生肉香风味物质的影响[J]. 食品科学, 2012, 33(7): 32-36.
[26] YANG C, SONG H L, CHEN F, et al. Response surface methodology for meat-like odorants from the maillard reaction with glutathione Ⅱ: The tendencies analysis of meat-like donors[J]. Journal of Food Science, 2011, 76(9): C1 267-C1 277.
[27] 高应瑞. 毕赤酵母表达风味强化肽呈味研究[D]. 天津:天津科技大学, 2011.
[28] 孙娇娇. 花生油脂代谢关键基因在酵母和聚球藻中表达及功能验证[D]. 哈尔滨:哈尔滨工业大学, 2014.
[29] POLI J S, DA SILVA M A N, SIQUEIRA E P, et al. Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: A potential feedstock for biodiesel production[J]. Bioresource Technology, 2014, 161: 320-326.
[30] LAZAR Z, LIU N, STEPHANOPOULOS G. Holistic approaches in lipid production by Yarrowia lipolytica[J]. Trends in Biotechnology, 2018, 36(11): 1 157-1 170.
[31] YOOK S D, KIM J, WOO H M, et al. Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents[J]. Renewable Energy, 2019, 132: 61-67.
[32] 孙晓明, 张佳程, 卢凌, 等. 牛胴体部位肉营养成分和理化指标差异性分析[J]. 中国畜牧兽医, 2011, 38(2): 205-208.
[33] PEREZ I M N, BADARO A T, BARBON S, et al. Classification of chicken parts using a portable near-infrared (NIR) spectrophotometer and machine learning[J]. Applied Spectroscopy, 2018, 72(12): 1 774-1 780.
[34] 孙晓明, 卢凌, 张佳程, 等. 牛肉化学成分的近红外光谱检测方法的研究[J]. 光谱学与光谱分析, 2011, 31(2): 379-383.
[35] ZOU Y, ZHANG K, ZHANG X X, et al. Optimization of goose breast meat tenderness by rapid ultrasound treatment using response surface methodology and artificial neural network[J]. Animal Science Journal, 2018, 89(9): 1 339-1 347.
[36] BARBON S, BARBON A P A D, MANTOVANI R G, et al. Machine learning applied to near-infrared spectra for chicken meat classification[J]. Journal of Spectroscopy, 2018:8 949 741.
[37] GODOI F C, PRAKASH S, BHANDARI B R. 3d printing technologies applied for food design: Status and prospects[J]. Journal of Food Engineering, 2016, 179: 44-54.
[38] 周涛, 徐书洁, 杨继全. 3D食品打印技术研究的最新进展[J]. 食品工业, 2016, 37(12): 208-212.
[39] 郑少京, 吕志强. 主导3D打印技术的关键-3D建模[J]. 办公自动化, 2015(14): 61-62.
[40] GUNTHER D, HEYMEL B, GUNTHER J F, et al. Continuous 3D-printing for additive manufacturing[J]. Rapid Prototyping Journal, 2014, 20(4): 320-327.
[41] ATTALLA R, PUERSTEN E, JAIN N, et al. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle[J]. Biofabrication, 2018, 11(1): 015 012.
[42] SANG L Y, ZHOU X H, YUN F, et al. Enzymatic synthesis of chitosan-gelatin antimicrobial copolymer and its characterisation[J]. Journal of the Science of Food and Agriculture, 2010, 90(1): 58-64.
[43] LUEDERS C, JASTRAM B, HETZER R, et al. Rapid manufacturing techniques for the tissue engineering of human heart valves[J]. European Journal of Cardio-Thoracic Surgery, 2014, 46(4): 593-601.
[44] SARATTI C M, ROCCA G T, KREJCI I. The potential of three-dimensional printing technologies to unlock the development of new 'bio-inspired' dental materials: an overview and research roadmap[J]. Journal of Prosthodontic Research, 2019, 63(2): 131-139.