In vitro hypolipidemic function of fermented porphyra extract

  • DENG Qianying ,
  • LI Huanhuan ,
  • ZENG Rongji ,
  • LI Guiling ,
  • LIU Jingwen ,
  • LI Jian
Expand
  • 1. College of Food and biological engineering, Jimei University, Xiamen 361021, China;
    2. Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China

Received date: 2019-02-20

  Revised date: 2019-04-02

  Online published: 2019-07-16

Abstract

The functional analysis of microbial fermentation products of porphyra was carried out. Porphyra was fermented with Saccharomyces cerevisiae and Bacillus subtilis at both solid and liquid status, and in vitro hypolipidemic effects of fermented porphyra extracts were evaluated using non-alcoholic fatty liver disease (NAFLD) cells. The results showed that water-soluble proteins in fermented porphyra increased and the content of reducing sugar decreased significantly. The suppression rate of fat by high concentrations of alcoholic fermented extracts of B. subtilis was 73%, which was close to that of the positive control lovastatin. Moreover, high concentrations of aqueous fermented extracts decreased the content of intracellular total triglyceride (TG) by 8.4% compared with the model group. Furthermore, alcoholic extracts from solid and liquid fermentation had significant down-regulation effects on intracellular total cholesterol (TC) contents, which were 20.3% and 18.2%, respectively, lower than that of the model group. The results indicate that fermented porphyra had potential hypolipidemic function, which provides a theoretical basis for further study on porphyra activity.

Cite this article

DENG Qianying , LI Huanhuan , ZENG Rongji , LI Guiling , LIU Jingwen , LI Jian . In vitro hypolipidemic function of fermented porphyra extract[J]. Food and Fermentation Industries, 2019 , 45(12) : 109 -113 . DOI: 10.13995/j.cnki.11-1802/ts.020248

References

[1] 钦传光,李世杰,丁焰,等. 发酵工程在医药研究和生产中的应用[J]. 湖北工业大学学报, 2000, 15(1): 67-70.
[2] 王芬,张婷,顾振新,等. 高效液相色谱法测定紫菜中牛磺酸含量[J]. 食品科学, 2012, 33(18): 162-164.
[3] LEBERT A. 2-fermented meat products[J]. Current Developments in Biotechnology & Bioengineering, 2017:25-43.
[4] SHAH N N, SINGHAL R S. 3-fermented fruits and vegetables[J]. Current Developments in Biotechnology & Bioengineering, 2017:45-89.
[5] GUPTA S, SHIMRAY C A, VENKATESWARA R G. Influence of organic acids on rheological and bread-making characteristics of fortified wheat flour[J]. International Journal of Food Sciences & Nutrition, 2012, 63(4): 411-420.
[6] 任聪,杜海,徐岩. 中国传统发酵食品微生物组研究进展[J]. 微生物学报, 2017, 57(6): 885-898.
[7] 李振宇,张凌,沈晨忱,等. 纳豆发酵工艺优化及风味改良[J]. 食品界, 2017 (6): 135-137.
[8] GUPTA S, ABU-GHANNAM N, SCANNELL A G M. Growth and kinetics of Lactobacillus plantarum in the fermentation of edible Irish brown seaweeds[J]. Food & Bioproducts Processing, 2011, 89(4): 346-355.
[9] 马文强,冯杰,刘欣. 微生物发酵豆粕营养特性研究[J]. 中国粮油学报, 2008, 23(1): 121-124.
[10] 不同分子质量条斑紫菜多糖体外抗氧化活性研究[J]. 上海海洋大学学报, 2015, 24(5): 783-788.
[11] 王治. 紫菜生物活性成分研究进展[J]. 食品研究与开发, 2017, 38(10): 215-218.
[12] 周慧萍,陈琼华. 紫菜多糖的抗凝血和降血脂作用[J]. 中国药科大学学报, 1990 (6): 358-360.
[13] 姚兴存,蒋卉,舒留泉,等. 条斑紫菜活性肽的抗氧化作用[J]. 食品科学, 2011, 32(7): 104-108.
[14] 郑温翔,郑惠彬,王宝周,等. 发酵酶解法提取紫菜蛋白多肽及其特性研究[J]. 食品与发酵工业, 2013, 39(4): 130-134.
[15] LIN H T, HWANG P A, LIN T C, et al. Production of Bacillus subtilis-fermented red alga porphyra dentata suspension with fibrinolytic and immune-enhancing activities[J]. Journal of the Agricultural Chemical Society of Japan, 2014, 78(6): 1 074-1 081.
[16] HAN D Q, ZHANG J J. Application of DNS method to the determination of saccharide content in pullulan fermentation broth[J]. Science & Technology of Food Industry, 2008, 107(2): 141-152.
[17] XIE C, CHEN Z, ZHANG C, et al. Dihydromyricetin ameliorates oleic acid-induced lipid accumulation in LO2 and HepG2 cells by inhibiting lipogenesis and oxidative stress[J]. Life Sciences, 2016, 157: 131-139.
[18] HWANG Y P, KIM H G, CHOI J H, et al. S-Allyl cysteine attenuates free fatty acid-induced lipogenesis in human HepG2 cells through activation of the AMP-activated protein kinase-dependent pathway [J]. Journal of Nutritional Biochemistry, 2013, 24(8):1 469-1 478.
[19] 杨林辉,陈东风. 油酸诱导培养肝细胞脂肪变性模型的建立[J]. 重庆医学, 2007, 36(8): 698-700.
[20] 殷锦锦,唐外姣,曾璐,等. 人肝细胞系L-02细胞单纯肝脂肪变性细胞模型的建立与应用[J]. 南方医科大学学报, 2014 (6): 837-842.
[21] LI X, WANG R, ZHOU N, et al. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model[J]. Biomed Rep, 2013, 1(1): 71-76.
[22] LOLICATO F, BROUWERS J F, DE-LEST C H A V, et al. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity[J]. Biology of Reproduction, 2015, 92(1): 1-16.
[23] CUI W, CHEN S L, HU K Q. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells[J]. American Journal of Translational Research, 2010, 2(1): 95-104.
[24] STEINKRAUS K H. Indonesian tempe and related fermentations[J]. Handbook of Indigenous Fermented Foods, 1996.
[25] KIERS J L, NOUT R M J, ROMBOUTS F M. In vitro digestibility of processed and fermented soya bean, cowpea and maize[J]. Journal of the Science of Food & Agriculture, 2000, 80(9): 1 325-1 331.
[26] HONG K J, LEE C H, KIM S W. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals[J]. Journal of Medicinal Food, 2004, 7(4): 430-435.
[27] 邵伟,熊泽,何晓文. 发酵大豆多肽及其功能研究[J]. 食品科技, 2005, 24(6): 26-28.
Outlines

/