Mechanisms of color-protective effects of lactates on chilled meats

  • TAI Jingjing ,
  • ZHANG Yubin ,
  • WU Shida ,
  • LI Bingzi ,
  • HAN Yun ,
  • HUANG Guoye ,
  • YU Qunli
Expand
  • 1. College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China;
    2. Yuzhong Zhongxing breeding company, Lanzhou 730070, China

Received date: 2018-12-04

  Revised date: 2018-12-28

  Online published: 2019-07-16

Abstract

The color of meat is an important quality parameter that affects consumers' choice. In recent years, many studies were conducted to investigate factors that affect flesh color and its stability, but the effects of lactates were less studied. Lactates as intermediate metabolites of the Krebs cycle, it involves in lactic acid-lactate dehydrogenase system that promotes nicotinamide adenine dinucleotide (NADH) regeneration to improve the reduction of high iron myoglobin (MMb) to achieve a stable flesh color. In addition, lipid oxidation also deteriorates flesh color, and lactates can regulate meat color by indirectly affecting lipid oxidation. As lactates have the advantages of safe and healthy, they have become a research hotspot for meat color preservation, but the mechanisms need further research. This paper summarized the latest research progress on the mechanisms of lactates preserving the color of chilled meat to provide reference for preserving chilled meat color.

Cite this article

TAI Jingjing , ZHANG Yubin , WU Shida , LI Bingzi , HAN Yun , HUANG Guoye , YU Qunli . Mechanisms of color-protective effects of lactates on chilled meats[J]. Food and Fermentation Industries, 2019 , 45(12) : 279 -284 . DOI: 10.13995/j.cnki.11-1802/ts.019530

References

[1] SUMAN S P, HUNT M C, NAIR M N, et al. Improving beef color stability: Practical strategies and underlying mechanisms [J]. Meat Science, 2014, 98(3):490-504.
[2] SUMAN S P, JOSEPH P. Myoglobin chemistry and meat color[J]. Annual Review of Food Science & Technology, 2013, 4(1):79-99.
[3] PUROHIT A, SINGH R, KERR W, et al. Effects of heme and nonheme iron on meat quality characteristics during retail display and storage[J]. Journal of Food Measurement & Characterization, 2015, 9(2):175-185.
[4] AHN D U, KIM I S, LEE E J. Irradiation and additive combinations on the pathogen reduction and quality of poultry meat[J]. Poultry Science, 2013, 92(2):534-545.
[5] 张文敏, 董庆利,宋筱瑜,等. 乳酸钠对肉及肉制品防腐保鲜作用的研究进展[J]. 食品科学, 2016, 37(1):235-240.
[6] 陈景宜,牛力,黄明,等.乳酸钙对牛肉糜色泽稳定性的影响[J].食品科学,2012,33(13):31-35.
[7] JOSEPH P, NAIR M N,SUMAN S P. Application of proteomics to characterize and improve color and oxidative stability of muscle foods[J]. Food Research International, 2015, 76:938-945.
[8] 白凤霞, 孔保华,戴瑞彤. 肉类颜色的影响因素研究[J]. 肉类研究, 2008(4):15-19.
[9] MANCINI R A, HUNT M C. Current research in meat color[J]. Meat Science, 2005, 71(1):100-121.
[10] 吴桂苹. 肉的颜色变化机理及肉色稳定性因素研究进展[J]. 肉类工业, 2006, 55(6):32-34.
[11] 袁先群. 肉类色泽变化机理研究进展[J]. 肉类研究, 2010, 43(9):6-12.
[12] 李蒙, 李铮,李欣,等. 磷酸化水平对肌红蛋白稳定性的影响[J]. 中国农业科学, 2017, 50(22):4 382-4 388.
[13] MANCINI R. Meat color[J]. Improving the Sensory & Nutritional Quality of Fresh Meat, 2009, 45(7):89-110.
[14] NGUYEN T,PHAN K N, LEE J B, et al. Met-myoglobin formation, accumulation, degradation, and myoglobin oxygenation monitoring based on multiwavelength attenuance measurement in porcine meat[J]. Journal of Biomedical Optics, 2016, 21(5):57 002.
[15] BREWER S. Irradiation effects on meat color-a review[J]. Meat Science, 2004, 68(1):1-17.
[16] MANCINI R A,RAMANATHAN R. Sodium lactate influences myoglobin redox stability in vitro[J]. Meat Science, 2008, 78(4):529-532.
[17] CHUN J Y, MIN S G, HONG G P. Effects of high-pressure treatments on the redox state of porcine myoglobin and color stability of pork during cold storage[J]. Food & Bioprocess Technology, 2014, 7(2):588-597.
[18] 庞广昌,陈庆森,胡志和.乳酸盐代谢及其在健康中的关键作用[J].食品科学, 2012, 33(1):1-15.
[19] KIM Y H, KEETON J T, SMITH S B, et al. Evaluation of antioxidant capacity andcolour stability of calcium lactate enhancement on fresh beef under highly oxidising condition[J]. Food Chemistry, 2009, 115(1):272-278.
[20] 张玉斌,张巨会,余群力,等.乳酸盐对冷却牦牛肉色泽稳定性及高铁肌红蛋白还原的影响[J].食品工业科技,2016,37(9):281-286.
[21] RAMANATHAN R. Role of mitochondria in postmortem color stability[J]. Dissertations & Theses-Gradworks, 2012, 78(5):7-35.
[22] NAIR M N,SUMANS P, LI S, et al. Temperature and pH dependent effect of lactate on in vitro redox stability of red meat myoglobins[J]. Meat Science, 2014, 96(1):408-412.
[23] MANCINI R A,SUMAN S P, KONDA M K R, et al. Mass spectrometric investigations on lactate adduction to equine myoglobin[J]. Meat Science, 2010, 85(2):363-367.
[24] DJIMSA B A, ABRAHAM A, MAFI G G, et al. Effects of metmyoglobin reducing activity and thermal stability of NADH-dependent reductase and lactate dehydrogenase on premature browning in ground beef[J]. Journal of Food Science, 2017, 82(2):304-313.
[25] GAO X, XIE L, WANG Z, et al. Effect of postmortem time on the metmyoglobin reductase activity, oxygen consumption, and colour stability of different lamb muscles[J]. European Food Research & Technology, 2013, 236(4):579-587.
[26] KIM Y H, HUNT M C,MANCIN R A, et al. Mechanism for lactate-color stabilization in injection-enhanced beef[J]. Journal of Agricultural & Food Chemistry, 2006, 54(20):7 856-7 862.
[27] RODRIGUEZ G, KIM Y H B, FAGET S, et al. Lactate-mediated enzymatic reduction of metmyoglobin in vitro[J]. Food Chemistry, 2011, 125(2):732-735.
[28] SALEH B, WATTS B M. Substrates and intermediates in the enzymatic reduction of metmyoglobin in ground beef[J]. Journal of Food Science, 2010, 33(4):353-358.
[29] MOHEN A. Myoglobin redox form stabilization: role of metabolic intermediates and NIR detection[D]. Manhattan: Kansas State University, 2009.
[30] NISHIDA H, MIKI K. Electrostatic properties deduced from refined structures of NADH-cytochrome b5 reductase and the other flavin-dependent reductases: Pyridine nucleotide-binding and interaction with an electron-transfer partner[J]. Proteins Structure Function & Bioinformatics, 1996, 26(1):32-41.
[31] RAMANATHAN R, MANCINI R A, MAHESWARAPPA N B. Effects of lactate on bovine heart mitochondria-mediated metmyoglobin reduction[J]. Meat Science, 2010, 58(9):5 724-5 729.
[32] ARIHARA K, CASSENS R G, GREASER M L, et al. Localization of metmyoglobin-reducing enzyme (NADH-cytochrome b(5) reductase) system components in bovine skeletal muscle[J]. Meat Science, 1995, 39(2):205-213.
[33] ZHANG Y B. Role of lactate dehydrogenase in metmyoglobin reduction and color stability of chilled beef[J]. Boletín Técnico (Technical Bulletin), 2017, 55(12):98-107.
[34] GAO X G, WANG Z Y, TANG M T, et al. Comparsion of the effects of succinate and NADH on postmortem metmyoglobin redcutase activity and beef colour stability[J]. Journal of Integrative Agriculture, 2014, 13(8):1 817-1 826.
[35] TANG J. The postmortem potential of mitochondria and its effects on myoglobin forms and stability[D]. Hartford: University of Connecticut, 2005.
[36] PUROHIT A, SINGH R K, KERPR W L, et al. Influence of redox reactive Iron, lactate, and succinate on the myoglobin redox stability and mitochondrial respiration[J]. Journal of Agricultural & Food Chemistry, 2014, 62(52):12 570-12 575.
[37] SEPPONEN K, KOHO N, PUOLANNE E, et al. Distribution of monocarboxylate transporter isoforms MCT1, MCT2 and MCT4 in porcine muscles[J]. Acta Physiologica, 2003, 177(1):79-86.
[38] WITTENEERG J B, WITTENBER B A. Myoglobin function reassessed[J]. Journal of Experimental Biology, 2003, 206(12):2 011-2 020.
[39] HAGLER L, COPPES R I, HERMAN R H. Metmyoglobin reductase. Identification and purification of a reduced nicotinamide adenine dinucleotide-dependent enzyme from bovine heart which reduces metmyoglobin[J]. Journal of Biological Chemistry, 2000, 254(14):6 505-6 514.
[40] PUROHHIT A, SINGH R K, KERR W L, et al. Influence of redox reactive iron, lactate, and succinate on the myoglobin redox stability and mitochondrial respiration[J]. Journal of Agricultural & Food Chemistry, 2014, 62(52):12 570-12 575.
[41] RAMANATHAN R, MADDEN R, MAFI G G, et al. Comparison of extraction procedures to characterize beef longissimus, metabolomic profile[J]. Meat Science, 2015, 101:161-162.
[42] RAMANATHAN R, MANCINI R A, KONADA M R. Effects of lactate on beef heart mitochondrial oxygen consumption and muscle darkening[J]. J Agric Food Chem, 2009, 57(4):1 550-1 555.
[43] RAMANATHAN R, MANCINI R A, JOSEPH P, et al. Bovine mitochondrial oxygen consumption effects on oxymyoglobin in the presence of lactate as a substrate for respiration.[J]. Meat Science, 2013, 93(4):893-897.
[44] LIU F,XU Q, DAI R T, et al. Effects of natural antioxidants on colour stability, lipid oxidation and metmyoglobin reducing activity in raw beef patties[J]. Acta Scientiarum Polonorum Technologia Alimentaria, 2015, 14(1):37-44.
[45] MANCINI R A,SUMAN S P, KONDA M K R, et al. Mass spectrometric investigations on lactate adduction to equine myoglobin[J]. Meat Science, 2010, 85(2):363-367.
[46] CRUZEN S M, KIM Y H B, LONERGAN S M, et al. Effect of early postmortem enhancement of calcium lactate/phosphate on quality attributes of beef round muscles under different packaging systems[J]. Meat Science, 2015, 101:63-72.
[47] KIM H W, CHOI Y S, CHOI J H, et al. Antioxidant effects of soy sauce on color stability and lipid oxidation of raw beef patties during cold storage[J]. Meat Science, 2013, 95(3):641-646.
[48] YI G,GRABEZˇ V, BJELANOVIC M, et al. Lipid oxidation in minced beef meat with added Krebs cycle substrates to stabilise colour[J]. Food Chemistry, 2015, 187:563-571.
[49] 陈骋,余群力,韩玲,等.丙二醛对牛肉线粒体MMb还原能力的影响[J].农业机械学报,2015,46(12):253-259.
[50] 吴爽,罗欣,毛衍伟,等.线粒体对肉色及其稳定性影响的研究进展[J].食品科学,2018,39(15):247-253.
[51] RAMANATHAN R, MANCINI R A, SUMAN S P, et al. Effects of 4-hydroxy-2-nonenal on beef heart mitochondrial ultrastructure, oxygen consumption, and metmyoglobin reduction[J]. Meat Science, 2012, 90(3):564-571.
Outlines

/