[1] SUMAN S P, HUNT M C, NAIR M N, et al. Improving beef color stability: Practical strategies and underlying mechanisms [J]. Meat Science, 2014, 98(3):490-504.
[2] SUMAN S P, JOSEPH P. Myoglobin chemistry and meat color[J]. Annual Review of Food Science & Technology, 2013, 4(1):79-99.
[3] PUROHIT A, SINGH R, KERR W, et al. Effects of heme and nonheme iron on meat quality characteristics during retail display and storage[J]. Journal of Food Measurement & Characterization, 2015, 9(2):175-185.
[4] AHN D U, KIM I S, LEE E J. Irradiation and additive combinations on the pathogen reduction and quality of poultry meat[J]. Poultry Science, 2013, 92(2):534-545.
[5] 张文敏, 董庆利,宋筱瑜,等. 乳酸钠对肉及肉制品防腐保鲜作用的研究进展[J]. 食品科学, 2016, 37(1):235-240.
[6] 陈景宜,牛力,黄明,等.乳酸钙对牛肉糜色泽稳定性的影响[J].食品科学,2012,33(13):31-35.
[7] JOSEPH P, NAIR M N,SUMAN S P. Application of proteomics to characterize and improve color and oxidative stability of muscle foods[J]. Food Research International, 2015, 76:938-945.
[8] 白凤霞, 孔保华,戴瑞彤. 肉类颜色的影响因素研究[J]. 肉类研究, 2008(4):15-19.
[9] MANCINI R A, HUNT M C. Current research in meat color[J]. Meat Science, 2005, 71(1):100-121.
[10] 吴桂苹. 肉的颜色变化机理及肉色稳定性因素研究进展[J]. 肉类工业, 2006, 55(6):32-34.
[11] 袁先群. 肉类色泽变化机理研究进展[J]. 肉类研究, 2010, 43(9):6-12.
[12] 李蒙, 李铮,李欣,等. 磷酸化水平对肌红蛋白稳定性的影响[J]. 中国农业科学, 2017, 50(22):4 382-4 388.
[13] MANCINI R. Meat color[J]. Improving the Sensory & Nutritional Quality of Fresh Meat, 2009, 45(7):89-110.
[14] NGUYEN T,PHAN K N, LEE J B, et al. Met-myoglobin formation, accumulation, degradation, and myoglobin oxygenation monitoring based on multiwavelength attenuance measurement in porcine meat[J]. Journal of Biomedical Optics, 2016, 21(5):57 002.
[15] BREWER S. Irradiation effects on meat color-a review[J]. Meat Science, 2004, 68(1):1-17.
[16] MANCINI R A,RAMANATHAN R. Sodium lactate influences myoglobin redox stability in vitro[J]. Meat Science, 2008, 78(4):529-532.
[17] CHUN J Y, MIN S G, HONG G P. Effects of high-pressure treatments on the redox state of porcine myoglobin and color stability of pork during cold storage[J]. Food & Bioprocess Technology, 2014, 7(2):588-597.
[18] 庞广昌,陈庆森,胡志和.乳酸盐代谢及其在健康中的关键作用[J].食品科学, 2012, 33(1):1-15.
[19] KIM Y H, KEETON J T, SMITH S B, et al. Evaluation of antioxidant capacity andcolour stability of calcium lactate enhancement on fresh beef under highly oxidising condition[J]. Food Chemistry, 2009, 115(1):272-278.
[20] 张玉斌,张巨会,余群力,等.乳酸盐对冷却牦牛肉色泽稳定性及高铁肌红蛋白还原的影响[J].食品工业科技,2016,37(9):281-286.
[21] RAMANATHAN R. Role of mitochondria in postmortem color stability[J]. Dissertations & Theses-Gradworks, 2012, 78(5):7-35.
[22] NAIR M N,SUMANS P, LI S, et al. Temperature and pH dependent effect of lactate on in vitro redox stability of red meat myoglobins[J]. Meat Science, 2014, 96(1):408-412.
[23] MANCINI R A,SUMAN S P, KONDA M K R, et al. Mass spectrometric investigations on lactate adduction to equine myoglobin[J]. Meat Science, 2010, 85(2):363-367.
[24] DJIMSA B A, ABRAHAM A, MAFI G G, et al. Effects of metmyoglobin reducing activity and thermal stability of NADH-dependent reductase and lactate dehydrogenase on premature browning in ground beef[J]. Journal of Food Science, 2017, 82(2):304-313.
[25] GAO X, XIE L, WANG Z, et al. Effect of postmortem time on the metmyoglobin reductase activity, oxygen consumption, and colour stability of different lamb muscles[J]. European Food Research & Technology, 2013, 236(4):579-587.
[26] KIM Y H, HUNT M C,MANCIN R A, et al. Mechanism for lactate-color stabilization in injection-enhanced beef[J]. Journal of Agricultural & Food Chemistry, 2006, 54(20):7 856-7 862.
[27] RODRIGUEZ G, KIM Y H B, FAGET S, et al. Lactate-mediated enzymatic reduction of metmyoglobin in vitro[J]. Food Chemistry, 2011, 125(2):732-735.
[28] SALEH B, WATTS B M. Substrates and intermediates in the enzymatic reduction of metmyoglobin in ground beef[J]. Journal of Food Science, 2010, 33(4):353-358.
[29] MOHEN A. Myoglobin redox form stabilization: role of metabolic intermediates and NIR detection[D]. Manhattan: Kansas State University, 2009.
[30] NISHIDA H, MIKI K. Electrostatic properties deduced from refined structures of NADH-cytochrome b5 reductase and the other flavin-dependent reductases: Pyridine nucleotide-binding and interaction with an electron-transfer partner[J]. Proteins Structure Function & Bioinformatics, 1996, 26(1):32-41.
[31] RAMANATHAN R, MANCINI R A, MAHESWARAPPA N B. Effects of lactate on bovine heart mitochondria-mediated metmyoglobin reduction[J]. Meat Science, 2010, 58(9):5 724-5 729.
[32] ARIHARA K, CASSENS R G, GREASER M L, et al. Localization of metmyoglobin-reducing enzyme (NADH-cytochrome b(5) reductase) system components in bovine skeletal muscle[J]. Meat Science, 1995, 39(2):205-213.
[33] ZHANG Y B. Role of lactate dehydrogenase in metmyoglobin reduction and color stability of chilled beef[J]. Boletín Técnico (Technical Bulletin), 2017, 55(12):98-107.
[34] GAO X G, WANG Z Y, TANG M T, et al. Comparsion of the effects of succinate and NADH on postmortem metmyoglobin redcutase activity and beef colour stability[J]. Journal of Integrative Agriculture, 2014, 13(8):1 817-1 826.
[35] TANG J. The postmortem potential of mitochondria and its effects on myoglobin forms and stability[D]. Hartford: University of Connecticut, 2005.
[36] PUROHIT A, SINGH R K, KERPR W L, et al. Influence of redox reactive Iron, lactate, and succinate on the myoglobin redox stability and mitochondrial respiration[J]. Journal of Agricultural & Food Chemistry, 2014, 62(52):12 570-12 575.
[37] SEPPONEN K, KOHO N, PUOLANNE E, et al. Distribution of monocarboxylate transporter isoforms MCT1, MCT2 and MCT4 in porcine muscles[J]. Acta Physiologica, 2003, 177(1):79-86.
[38] WITTENEERG J B, WITTENBER B A. Myoglobin function reassessed[J]. Journal of Experimental Biology, 2003, 206(12):2 011-2 020.
[39] HAGLER L, COPPES R I, HERMAN R H. Metmyoglobin reductase. Identification and purification of a reduced nicotinamide adenine dinucleotide-dependent enzyme from bovine heart which reduces metmyoglobin[J]. Journal of Biological Chemistry, 2000, 254(14):6 505-6 514.
[40] PUROHHIT A, SINGH R K, KERR W L, et al. Influence of redox reactive iron, lactate, and succinate on the myoglobin redox stability and mitochondrial respiration[J]. Journal of Agricultural & Food Chemistry, 2014, 62(52):12 570-12 575.
[41] RAMANATHAN R, MADDEN R, MAFI G G, et al. Comparison of extraction procedures to characterize beef longissimus, metabolomic profile[J]. Meat Science, 2015, 101:161-162.
[42] RAMANATHAN R, MANCINI R A, KONADA M R. Effects of lactate on beef heart mitochondrial oxygen consumption and muscle darkening[J]. J Agric Food Chem, 2009, 57(4):1 550-1 555.
[43] RAMANATHAN R, MANCINI R A, JOSEPH P, et al. Bovine mitochondrial oxygen consumption effects on oxymyoglobin in the presence of lactate as a substrate for respiration.[J]. Meat Science, 2013, 93(4):893-897.
[44] LIU F,XU Q, DAI R T, et al. Effects of natural antioxidants on colour stability, lipid oxidation and metmyoglobin reducing activity in raw beef patties[J]. Acta Scientiarum Polonorum Technologia Alimentaria, 2015, 14(1):37-44.
[45] MANCINI R A,SUMAN S P, KONDA M K R, et al. Mass spectrometric investigations on lactate adduction to equine myoglobin[J]. Meat Science, 2010, 85(2):363-367.
[46] CRUZEN S M, KIM Y H B, LONERGAN S M, et al. Effect of early postmortem enhancement of calcium lactate/phosphate on quality attributes of beef round muscles under different packaging systems[J]. Meat Science, 2015, 101:63-72.
[47] KIM H W, CHOI Y S, CHOI J H, et al. Antioxidant effects of soy sauce on color stability and lipid oxidation of raw beef patties during cold storage[J]. Meat Science, 2013, 95(3):641-646.
[48] YI G,GRABEZˇ V, BJELANOVIC M, et al. Lipid oxidation in minced beef meat with added Krebs cycle substrates to stabilise colour[J]. Food Chemistry, 2015, 187:563-571.
[49] 陈骋,余群力,韩玲,等.丙二醛对牛肉线粒体MMb还原能力的影响[J].农业机械学报,2015,46(12):253-259.
[50] 吴爽,罗欣,毛衍伟,等.线粒体对肉色及其稳定性影响的研究进展[J].食品科学,2018,39(15):247-253.
[51] RAMANATHAN R, MANCINI R A, SUMAN S P, et al. Effects of 4-hydroxy-2-nonenal on beef heart mitochondrial ultrastructure, oxygen consumption, and metmyoglobin reduction[J]. Meat Science, 2012, 90(3):564-571.