This study was conducted to reveal the relationship between Thermoactinomyces as well as their functional genes and the physicochemical properties of Daqu which could provide technical support for analyzing the specific functions and directional control of microorganisms and high temperature Daqu in Baijiu fermentation. The diversity and dynamic changes of Thermoactinomyces and their functional genes in high temperature Daqu used in sesame-flavored Baijiu were investigated using metagenomic sequencing technology. The results showed that the relative abundance of Thermoactinomyces was significantly positively correlated with Daqu temperature. As Daqu temperature rising, the potential heat resistance genes, such as Clp (K03695), groEL (K04077), and pstB (K02036) in Thermoactinomyces enriched into dominant genes and were significantly positively correlated with Daqu temperature, which could effectively promote Thermoactinomyces surviving at high temperature. Moreover, the fermentation time of Daqu was significantly positively correlated with CZAy annotated genes, saccharification and esterification power. Glycosylhydrolases and glycosyltransferases genes were also positively correlated with saccharification and esterification power of Daqu significantly. These indicated that the abundance of Thermoactinomyces increased during the fermentation of Daqu, and the genes related to carbohydrate degradation were gradually enriched, which promoted the saccharification and esterification power of Daqu.
YU Xuejian
,
FENG Huijun
,
ZHAI Lei
,
BAI Xiubin
,
XU Ling
,
YU Panpan
,
CHENG Chi
,
YAO Su
. Dynamic changes of Thermoactinomyces and their functional genes in high temperature Daqu of Sesame-flavored Baijiu[J]. Food and Fermentation Industries, 2019
, 45(13)
: 71
-77
.
DOI: 10.13995/j.cnki.11-1802/ts.019959
[1] 韩金宏, 励建荣. 我国白酒行业的现状和发展前景[J]. 农产品加工, 2006(2):50-52.
[2] 高传强, 阳飞,张华山. 芝麻香型白酒微生物菌群及风味物质研究进展[J]. 微生物学通报, 2017, 44(4):940-948.
[3] 来安贵, 赵德义,曹建全. 芝麻香型白酒的发展历史、现状及发展趋势[J]. 酿酒, 2009, 36(1):91-93.
[4] 车明秀, 胡明燕,王骏,等. 芝麻香型白酒风味物质主体成分研究进展[J]. 酿酒科技, 2016(11):97-99.
[5] 杨代永, 范光先,汪地强,等. 高温大曲中的微生物研究[J]. 酿酒科技, 2007(5):37-38.
[6] 沈怡方. 芝麻香型白酒的生产实践总结[J]. 酿酒, 2017, 44(1):3-6.
[7] 岳腾飞, 程伟,张杰,等. 芝麻香型白酒的酿造生产及其工艺创新研究进展[J]. 酿酒, 2018,45(2):6-10.
[8] ZHENG X W, YAN Z, HAN B Z, et al. Complex microbiota of a Chinese “ Fen ” liquor fermentation starter (Fen-Daqu), revealed by culture-dependent and culture-independent methods[J]. Food Microbiology, 2012, 31(2):293-300.
[9] WANG C L, SHI D J, GONG G L. Microorganisms in Daqu: a starter culture of Chinese Maotai-flavor liquor[J]. World Journal of Microbiology & Biotechnology, 2008, 24(10):2 183-2 190.
[10] 王世伟, 王卿惠,芦利军,等. 白酒酿造微生物多样性、酶系与风味物质形成的研究进展[J]. 农业生物技术学报, 2017, 25(12):2 038-2 051.
[11] 李斌, 闫志鹏,李慧星,等. 基于高通量测序技术的浓香型和芝麻香型白酒酒曲细菌群落结构分析[J]. 中国酿造, 2018,37(8):148-152.
[12] 姚粟, 葛媛媛,李辉,等. 利用非培养技术研究芝麻香型白酒高温大曲的细菌群落多样性[J]. 食品与发酵工业, 2012, 38(6):1-6.
[13] 梁晨, 杜海,徐岩. 大曲贮存过程中原核微生物群落结构及风味成分演替规律[J]. 微生物学通报, 2017, 44(2):384-393.
[14] 葛媛媛, 姚粟,刘洋,等. 芝麻香型白酒高温大曲嗜热细菌群落研究[J]. 食品与发酵工业, 2012, 38(11):16-19.
[15] 冯慧军, 翟磊,程坤,等. 高温放线菌属研究进展[J]. 食品与发酵工业, 2017, 43(11):257-261.
[16] 李豆南, 黄魏,王晓丹,等. 酱香型大曲中高温放线菌的筛选及风味成分分析[J]. 食品科学, 2018, 39(6):171-176.
[17] 李元迎, 李万贵,苑鹏飞. 耐高温菌群发酵技术实现农作物秸秆资源化[J]. 科技风, 2017(7):226-226.
[18] 李贤柏. 朗酒高温大曲产酱香细菌的研究[J]. 重庆师范大学学报:自然科学版, 1997(4):20-23.
[19] 张书田, 杨军山. 美拉德反应产物对白酒酿造的贡献[J]. 酿酒科技, 2009(6):78-80.
[20] 施安辉, 李丽莉,卞建平,等. 徐坊芝麻香型酒专用大曲中主要微生物的分布、优势菌种的鉴定及代谢产物的初步分析[J]. 山东食品发酵, 2010(1):8-10.
[21] SU Y, YANG L, HUI L, et al. Bacterial communities during the process of high-temperature Daqu production of roasted sesame-like flavour liquor[J]. Journal of the Institute of Brewing, 2015, 121(3):440-448.
[22] 戴奕杰, 李宗军,田志强. 酱香型白酒大曲和糟醅的真菌多样性分析[J]. 现代食品科技, 2018,34(7):97-104.
[23] 周健, 郭志,明红梅,等. 优质中高温浓香型大曲主要香味成分的初步研究[J]. 酿酒科技, 2014(4):11-14.
[24] LEE S, SOWA M E, WATANABE Y, et al. The structure of ClpB: A molecular chaperone that rescues proteins from an Aggregated state [J]. Cell, 2003, 115(2):229-240.
[25] MISHRA R C, GROVER A. ClpB/Hsp100 proteins and heat stress tolerance in plants[J]. Critical Reviews in Biotechnology, 2015, 36(5):1.
[26] SIGLER P B, XU Z, RYE H S, et al. Structure and function in groEL-mediated protein folding[J]. Annual Review of Biochemistry, 1998, 67(67):581-608.
[27] ASHRAF R, MUHAMMAD M A, RASHID N, et al. Cloning and characterization of thermostable GroEL/GroES homologues from Geobacillus thermopakistaniensis and their applications in protein folding.[J]. Journal of Biotechnology, 2017, 254:9-16.
[28] DUWAT P, EHRLICH S D, GRUSS A. Effects of metabolic flux on stress response pathways in Lactococcus lactis.[J]. Molecular Microbiology, 2010, 31(3):845-858.