Optimization of composite improver for Lycium barbarum bread and evaluation of its multiple quality variables

  • ZHANG Huaiyu ,
  • SHEN Shishuang ,
  • ZHANG Hao ,
  • Lin Qin ,
  • XIANG Aiyuan ,
  • PU Xiaoju ,
  • WANG Junjie
Expand
  • College of Biological and Engineering, North Minzu University; Key Laboratory of Storage and Processing of Plant Agro-Products, North Minzu University; Key Laboratory of Fermentation and Brewing Engineering and Biotechnology, State Ethnic Affairs Commission; Yinchuan 750021, China

Received date: 2018-11-07

  Online published: 2019-07-28

Abstract

In order to study the effects of improvers on baking quality of Lycium barbarum bread, differences in qualities between improved Lycium barbarum bread, Lycium barbarum bread, and the blank were compared quantitatively by principal component analysis (PCA). The results showed that the optimized composite improver was based on flour and composed of 2.0 g/100 g wheat gluten, 0.4 g/100 g sodium stearyl lactate, 16.4 mg/100 g Vc, and 19.5 mg/100 g glucose oxidase. The specific volume and the height to diameter ratio of improved bread with optimal composite improver were 1.34 and 1.11 times higher than the blank, and 1.06 and 1.15 times higher than Lycium barbarum bread, respectively. The moisture loss rate and the hardness rising rate of the improved bread during storage were significantly lower than the others. PCA indicated that the elastic flexibility, adhesiveness, bread appearance, and tissue structure etc. of the blank and Lycium barbarum bread began to decline after storing for 3 d. Additionally, their hardness and cohesiveness increased significantly, and their surface color became dark. In comparison, the improved bread had apparent better quality. This study provides practical guidance for developing nutritious Lycium barbarum bread.

Cite this article

ZHANG Huaiyu , SHEN Shishuang , ZHANG Hao , Lin Qin , XIANG Aiyuan , PU Xiaoju , WANG Junjie . Optimization of composite improver for Lycium barbarum bread and evaluation of its multiple quality variables[J]. Food and Fermentation Industries, 2019 , 45(13) : 232 -241 . DOI: 10.13995/j.cnki.11-1802/ts.019270

References

[1] 苏宇静, 贺海明,孙兆军. 中国枸杞资源及其在食品工业中的应用现状和开发前景[J]. 食品科学, 2002, 23(8): 292-294.
[2] 程乾斗. 微生物肥料对枸杞生长发育影响的研究[D]. 兰州:甘肃农业大学, 2014.
[3] 卢茁, 杨宁. 浅析中国人吃馒头欧洲人吃面包的原因[J]. 现代面粉工业, 2017, 31(5): 9-11.
[4] 杨秀琴, 邹奇波,黄卫宁. 酵母菌对自然发酵酸面团面包中风味物质影响的研究[J]. 食品与机械, 2006, 22(3): 37-40.
[5] 张怀予, 王军节,林勤,等. 枸杞面包工艺优化及其品质分析[J]. 食品研究与开发, 2017, 38(18): 87-92.
[6] 杨雪飞, 袁蓓蕾,罗水忠,等. 品质改良剂对复合杂粮面包粉流变学特性的影响[J]. 食品科学, 2015, 36(11): 75-80.
[7] 李真, 董英,於来婷. 大麦面包复合改良剂的优化及其对面包品质的改善作用[J]. 中国粮油学报, 2016, 31(6): 117-122.
[8] 徐超宇, 马晓军. 面包改良剂对红薯面包面团流变特性的影响及改良剂的优化分析[J]. 食品工业科技, 2015, 36(19): 267-274.
[9] 刘洋, 李波,孙俊良,等. 响应面法优化豆渣面包复合改良剂的研究[J]. 大豆科学, 2012, 31(6): 1 007-1 012.
[10] 魏宗烽, 邵颖. 响应面法优化板栗面包复合改良剂的研究[J]. 粮食与饲料工业, 2014, 12(9): 19-23.
[11] SZCZESNIAK A S. Objective measurements of food texture[J]. Food Science, 1963, 28(4): 410-420.
[12] 戴军. 食品仪器分析技术[M]. 北京:化学工业出版社, 2006:308.
[13] 陈洁, 姚晓玲,刘丹松. 质构仪对面包品质改良剂效果评价的应用[J]. 粮食与饲料工业, 2008(6):16-17.
[14] AZID A, JUAHIR H, TORIMAN M E, et al. Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: a case study in Malaysia[J]. Water Air & Soil Pollution, 2014, 225(8): 2063.
[15] 张卓萌. 基于模糊集理论的主成分分析方法研究[D]. 大连:大连海事大学, 2008.
[16] 伍婧, 王远亮,李珂,等. 基于主成分分析的不同醒发条件下挂面的特征质构[J]. 食品科学, 2016, 37(21): 119-123.
[17] 田晓静, 刘元林,蒙秋柏,等. 多指标综合评价风干牛肉品质的研究[J]. 食品工业科技, 2017, 38(14): 6-10.
[18] 唐会周,明建. 5种市售脐橙果实香气成分的主成分分析[J]. 食品科学, 2011, 32(20): 175-180.
[19] 张雪波, 肖世青,杜先锋,等. 基于主成分分析法的安溪铁观音香气质量评价模型的构建[J]. 食品科学, 2012, 33(22): 225-230.
[20] JENSEN S, SKIBSTED L H, KIDMOSE U, et al. Addition of cassava flours in bread-making: sensory and textural evaluation[J]. LWT-Food Science and Technology, 2015, 60(1): 292-299.
[21] 李卓瓦, 王春,陈洁. 质构仪拉伸试验在面粉品质评价中的应用[J]. 粮食加工, 2006, 31(4): 90-91.
[22] 王军节, 努力扎提,张怀予,等. 外源木聚糖酶对面包感官品质和质地的影响[J]. 食品科技, 2011, 36(12): 268-271.
[23] 张园园, 温白娥,卢宇,等. 藜麦粉对小麦面团、面包质构特性及品质的影响[J]. 食品与发酵工业, 2017, 43(10): 197-202.
[24] BOUREKOUA H, BENATALLAH L, ZIDOUNE M N, et al. Developing gluten free bakery improvers by hydrothermal treatment of rice and corn flours[J]. LWT - Food Science and Technology, 2016, 73: 342-350.
[25] LICCIARDELLO F, GIANNONE V, DEL NOBILE M A, et al. Shelf life assessment of industrial durum wheat bread as a function of packaging system[J]. Food Chemistry, 2017, 224: 181-190.
[26] ALENCAR N M M, STEEL C J, ALVIM I D, et al. Addition of quinoa and amaranth flour in gluten-free breads: Temporal profile and instrumental analysis[J]. LWT-Food Science and Technology, 2015, 62(2): 1 011-1 018.
[27] 马涛. 焙烤食品工艺[M]. 北京:化学工业出版社, 2007: 90.
[28] 李小满. 面包改良剂功能与特性的研究(Ⅱ) [J]. 中国食品添加剂, 2001(2): 23-26.
[29] BONET A, ROSELL C M, CABALLERO P A, et al. Glucose oxidase effect on dough rheology and bread quality: A study from macroscopic to molecular level[J]. Food Chemistry, 2006, 99(2): 408-415.
[30] HASSAN A A, EL-SHAZLY H A M, SAKR A M, et al. Influence of substituting water with fermented skim milk, acid cheese whey or Buttermilk on dough properties and baking quality of pan bread[J]. World Journal of Dairy & Food Sciences, 2013, 8(1): 100-117.
[31] 王美萍. 乳化剂在面包制作中的应用[J]. 中国食品, 2010(14): 76-78.
[32] 高红岩, 张守文. 硬脂酰乳酸钠对面粉品质特性及馒头品质的影响[J]. 食品科学, 2005, 26(1): 84-87.
[33] JATOI M A, JURIC′ S, VIDRIH R, et al. The effects of postharvest application of lecithin to improve storage potential and quality of fresh goji (Lycium barbarum L.) berries[J]. Food chemistry, 2017, 230: 241-249.
Outlines

/