In order to enhance the efficiency of bacitracin fed-batch fermentation, effects of pH coupling, intermittent feeding-tank pressure control, intermittent-dissolved oxygen (DO) coupling and other feeding strategies on bacitracin synthesis were investigated in a 50 L fermenter. The amount of bacitracin produced by pH coupling strategy was 1 006 U/mL. However, in middle and late stages of logarithmic growth, glucose could not be filled in due to pH below the set value. Although bacitracin produced by intermittent feeding-tank pressure control strategy was 11% higher than that of pH coupling strategy, it also had a problem of sugar-DO mismatched at late fermentation stage. The intermittent-DO coupling strategy overcame the above drawbacks, the conversion rate of sugar to bacitracin (YP/S) increased by 22.7% compared with that of intermittent feeding-tank pressure control strategy. Based on intermittent-DO coupling feeding strategy and secondary nitrogen source feeding at 24 h, the average bacitracin synthesis rate reached 40.67 U/(mL·h), and the peak value of bacitracin production reached 1 220 U/mL. Therefore, a feeding strategy based on comprehensive carbon-nitrogen-oxygen factor of cell demand is established, which provides an important reference for industrialized fed-batch fermentation to produce bacitracin.
YANG Hua
,
SONG Zhao
,
DAI Hang
,
CHEN Xiong
,
LI Xin
,
CHEN Shouwen
,
CAI Dongbo
,
LI Junhui
,
WANG Zhi
. Feeding batch fermentation strategy based on cellular demands of carbon-nitrogen-oxygen promotes bacitracin synthesis[J]. Food and Fermentation Industries, 2019
, 45(15)
: 30
-36
.
DOI: 10.13995/j.cnki.11-1802/ts.020397
[1] SHRUTI B, KUMAR D, PATRICIA R, et al. High level extracellular production of recombinant γ-glutamyl transpeptidase from Bacillus licheniformis in Escherichia coli fed-batch culture[J]. Enzyme and Microbial Technology, 2018, 116:23-32.
[2] 祝亚娇, 宋嘉宾,陈杨阳,等. 地衣芽胞杆菌工程菌高产纳豆激酶的发酵罐工艺优化及中试放大[J]. 食品与发酵工业, 2016, 42(1):37-41.
[3] ZHAO Y L, WEN L Y, CHEN S W, et al. Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2 [J]. Applied Microbiology and Biotechnology, 2018, 102(16):6 935-6 946.
[4] HANSEN F T, GARDINER D M, LYSE E, et al. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium [J]. Fungal Genetics and Biology, 2015, 75:20-29.
[5] 李冠楠, 夏雪娟,隆耀航,等. 抗菌肽的研究进展及其应用[J]. 动物营养学报, 2014, 26 (1):17-25.
[6] 罗娟, 马海乐,刘雪姣,等. 枯草芽孢杆菌液态发酵豆粕的种子培养基和发酵培养基优化研究[J]. 食品工业科技, 2016,37(8):229-233;251.
[7] PURI-TANEJA A, SCHAU M, CHEN Y. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD[J]. Journal of Bacteriology, 2007, 189(9):3 348-3 358.
[8] KABISCH J, PRATZKA I, MEYER H, et al. Metabolic engineering of Bacillus subtilis for growth on overflow metabolites[J]. Microbial Cell Factories, 2013, 12(1):72.
[9] PACZIA N, NILGEN A, LEHMANN T, et al. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms[J]. Microbial Cell Factories, 2012, 11(1):1-14.
[10] MITSUNAGA H, MEISSNER L, PALMEN T, et al. Metabolome analysis reveals the effect of carbon catabolite control on the poly (γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945[J]. Journal of Bioscience & Bioengineering, 2015, 121(4):413-419.
[11] 邓坤,冀志霞,陈守文,等. 溶氧对地衣芽孢杆菌DW2合成杆菌肽的影响[J]. 中国抗生素杂志,2009, 34(11):664-668.
[12] 曾新年, 鲍帅帅,李洪杰,等. 双氧水对地衣芽胞杆菌合成杆菌肽的影响[J]. 中国酿造, 2013, 32(3):94-97.
[13] WANG Z, WANG Y, XIE F L, et al. Improvement of acetoin reductase activity enhances bacitracin production by Bacillus licheniformis[J]. Process Biochemistry, 2014, 49(12):2 039-2 043.
[14] 刘道奇, 陈守文,李俊辉,等. 混合碳源对地衣芽孢杆菌发酵合成杆菌肽的影响[J]. 食品与发酵工业, 2017,43(9):56-61.
[15] 辛星. 工程菌株发酵FK520的过程优化和抑制泡沫促进剂研究[D]. 天津:天津大学, 2014.
[16] 陈伟波, 周旭波,陈悦群,等. L-精氨酸发酵过程中的溶氧与泡沫研究[J]. 中外食品工业, 2015, 8(4):18-20.
[17] REFFATTI P F, ROY I, ODELL M, et al. Proteomics analysis of Bacillus licheniformis in response to oligosaccharides elicitors[J]. Enzyme and Microbial Technology, 2014, 61(1): 61-66.
[18] WANG Q, ZHENG H, WAN X, et al. Optimization of inexpensive agricultural by-products as raw materials for Bacitracin production in Bacillus licheniformis DW2 [J]. Applied Biochemistry and Biotechnology, 2017, 183(4):1 146-1 157.
[19] AHARONOWITZ Y. Nitrogen metabolite regulation of antibiotic biosynthesis[J]. Annual Review of Microbiology, 1980,34:209-233.
[20] 顾晓峰,颜盼.一种基于枯草芽孢杆菌的豆粕发酵方法:湖北,CN106490300A[P].2017-03-15.
[21] CHEN X, XIE F, ZENG X, et al. Supplementations of ornithine and KNO3 enhanced bacitracin production by Bacillus licheniformis LC-11[J]. Annals of Microbiology, 2014, 64(2): 509-514.
[22] BARBIERI G, ALBERTINI A M, FERRARI E, et al. Interplay of CodY and ScoC in the regulation of major extracellular protease genes of Bacillus subtilis[J]. Journal of Bacteriology, 2016,198(6):907-920.
[23] RANDAZZO P, AUCOUTURIER A, DELUMEAU O, et al. Revisiting the in vivo GlnR-binding sites at the genome scale in Bacillus subtilis[J]. BMC Research Notes, 2017,10(1):422-431.
[24] SHU C C, WANG D, GUO J, et al. Analyzing AbrB-knockout effects through genome and transcriptome sequencing of Bacillus licheniformis DW2[J]. Frontiers in Microbiology, 2018,9:1-11.
[25] WANG J, LIU S, LI Y, et al. Central carbon metabolism influences cellulase production in Bacillus licheniformis[J]. Letters in Applied Microbiology, 2017,66(1):49-54.
[26] LIU Z Y, YU W L, NOMURA T C, et al. Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2 [J]. Applied Microbiology and Biotechnology, 2018,102(16):6 935-6 946.