Effects of Fe3O4 nanoparticles on methanogenesis of simulated soybean protein wastewater and kinetic analysis

  • CAI Xiaoyang ,
  • TANG Renshi ,
  • ZHANG Yanping
Expand
  • (School of Light Industry of Science and Technology, Beijing Technology and Business University, Beijing 100048, China)

Received date: 2019-07-06

  Online published: 2020-02-16

Abstract

In order to improve the biogas yield during anaerobic digestion of soybean protein wastewater, the effect of Fe3O4 nanoparticles (Fe3O4NPs) on methanogenesis of simulated soybean protein wastewater was investigated by batch experiment, and two models were used to analyze the cumulative methane production. The results showed that addition of Fe3O4NPs could promote the gas production, the removal rate of organic matters and the level of methanogenesis. When the mass concentration of Fe3O4NPs was 300 mg/L, the cumulative gas production reached 652.12 mL, 23.51% higher than the control. The average methane content was 81.63%, and the highest removal rates of SCOD、BOD5 and protein were 89.11%, 91.91% and 71.52%, respectively. The methane production rate reached 331.40 mL/g (SCOD). Adding Fe3O4NPs could reduce the concentration of ammonia nitrogen and total nitrogen during anaerobic digestion. Both the Transference model and the modified Gompertz model could well fit the methanogenesis process while the former fits better (R2>0.96). The maximum yield of methane was as high as 350.84 mL/g(SCOD)with 300 mg/L of Fe3O4NPs.

Cite this article

CAI Xiaoyang , TANG Renshi , ZHANG Yanping . Effects of Fe3O4 nanoparticles on methanogenesis of simulated soybean protein wastewater and kinetic analysis[J]. Food and Fermentation Industries, 2019 , 45(22) : 47 -53 . DOI: 10.13995/j.cnki.11-1802/ts.021584

References

[1] 韩飞,刘勇.中国大豆蛋白产业现状及发展方向[J].大豆科技, 2013(3):13-16.
[2] LI R,WU Z L,WANG Y J,et al.Pilot study of recovery of whey soy proteins from soy whey wastewater using batch foam fractionation[J].Journal of Food Engineering,2014,142:201-209.
[3] 鲍立新,李建政,昌盛,等.ABR处理大豆蛋白废水的效能及微生物群落动态分析[J].环境科学2008,29(8):2 206-2 213.
[4] KUMAR N S K,YEA M K,CHERYAN M.Ultrafiltration of soy protein concentrate:Performance and modelling of spiral and tubular polymeric modules[J].Journal of Membrane Science,2004,244(1-2):235-242.
[5] GUO K Y,SHANGY N,GAO B Y,et al.Study on the treatment of soybean protein wastewater by a pilotscale IC-A/O coupling reactor[J].Chemical Engineering Journal,2018,343:189-197.
[6] ZHANG J,ZHANG Y,DIAO N.Combined approach for soybean wastewater chemical oxygen demand reduction using Aspergillus niger pelletization technology[J].Biotechnology&Biotechnological Equipment,2017,31(2):318-324.
[7] 刘亚利,钟婷婷,刘鹏飞,等.投加不同形态的铁对厌氧消化的影响和作用机理[J].应用化工,2018,47(10):226-229.
[8] MENG X,ZHANG Y,LI Q,et al.Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate[J].Biochemical Engineering Journal,2013,73:80-85.
[9] 马素丽,刘浩,严群.Fe2+对太湖蓝藻厌氧发酵产甲烷过程中关键酶的影响[J].食品与生物技术学报,2011,30(2):306-310.
[10] UR RAHMAN O,MOHAPATRA S C,AHMAD S.Fe3O4 inverse spinal super paramagnetic nanoparticles[J].Materials Chemistry & Physics,2012,132(1):196-202.
[11] BHALKIKAR A,GERNHART Z C,CHEUNG C L.Recyclable magnetite nanoparticle catalyst for one-pot conversion of cellobiose to 5-hydroxymethylfurfural in water[J].Journal of Nanomaterials,2015,16(1):315.
[12] 贾通通,王在钊,耿凤华,等.纳米Fe3O4对污泥厌氧产沼气性能的影响[J].环境工程技术学报,2017,7(2):201-208.
[13] LI H J,CHANG J L,LIU P F,et al.Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J].Environmental Microbiology,2015,17(5):1 533-1 547.
[14] HJ 505—2009 水质 五日生化需氧量(BOD5)的测定 稀释与接种法[S].北京:中国环境出版集团,2009.
[15] 罗芳.Folin-酚试剂法蛋白质定量测定[J].黔南民族师范学院学报,2005,25(3):46-47,72.
[16] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
[17] SYAICHURROZI I,SUMARDIONO S.Predicting kinetic model of biogas production and biodegradeability organic materials:Biogasproduction from vinasse at variation of COD/N ratio[J].Bioresource Technology,2013,149:390-397.
[18] LI Y,JIN Y,LI H,et al.Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste[J].Applied Energy,2018,213:136-147.
[19] 郭红红,牧辉,张晓东,等.纳米四氧化三铁对甲烷生物合成途径的影响[J].可再生能源,2018,36(9):1 271-1 277.
[20] 钱风越.Fe3O4纳米颗粒对厌氧消化产甲烷过程的影响研究[D].哈尔滨:哈尔滨工业大学,2015.
[21] YE J,HU A,REN G,et al.Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity[J].Bioresource Technology,2018,247:131-137.
[22] 孟晓山,张玉秀,隋倩雯,等.氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J].环境工程学报,2018,12(8):212-222.
[23] LI X,XU K,FU W,et al.Simultaneous in-situ excess sludge reduction and removal of organic carbon and nitrogen by a pilot-scale continuous aerobic-anaerobic coupled (CAAC) process for deeply treatment of soybean waste-water[J]. Biochemical Engineering Journal, 2014, 85: 30-37.
[24] 李舟. “预处理-UASB-A/O-BAF”组合工艺处理大豆蛋白废水的研究[D].济南:山东大学,2014.
[25] LI Z,GAO B,YUE Q.UASB-A/O-BAF treatment of high strength wastewater: A case study for soybean protein wastewater[J]. Desalination and Water Treatment, 2012, 47(1-3): 24-30.
[26] HAGEN L H,VIVEKANAND V,LINJORDET R,et al.Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems[J]. Bioresource Technology, 2014, 171: 350-359.
[27] 李宁.豆制品废水在厌氧-氧化沟系统中的处理研究[D].苏州:苏州科技学院,2011.
Outlines

/