[1] BACANLI M, DILSIZ S A, BASARAN N, et al. Effects of phytochemicals against diabetes [J]. Advances in Food and Nutrion Research,2019,89:209.
[2] MUROTOMI K, UMENO A, YASUNAGA M, et al. Oleuropein-rich diet attenuates hyperglycemia and impaired glucose tolerance in type 2 diabetes model mouse[J]. Journal of Agricultural and Food Chemistry, 2015, 63(30):6 715-6 722.
[3] CHO N H, SHAW J E, KARURANGA S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 [J]. Diabetes Research and Clinical Practice, 2018, 138:271-281.
[4] NELL S, SUERBAUM S, JOSENHANS C. The impact of the microbiota on the pathogenesis of IBD: iessons from mouse infection models[J]. Nature Reviews Microbiology, 2010, 8(8):564-577.
[5] XU P, HONG F, WANG J, et al. Microbiome remodeling via the montmorillonite adsorption-excretion axis prevents obesity-related metabolic disorders[J]. EBioMedicine, 2017, 16:251-261.
[6] AHMADI S, NAGPAL R, WANG S, et al. Prebiotics from acorn and sago prevent high-fat-diet-induced insulin resistance via microbiome-gut-brain axis modulation [J]. The Journal of Nutritional Biochemistry, 2019, 67:1-13.
[7] 许应强,董艳. 双歧杆菌的临床作用和应用[J]. 中国现代药物应用, 2007, 1(7):61-62.
[8] SOLEIMANI A, MOJARRAD M Z, BAHMANI F, et al. Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects[J]. Kidney International, 2017, 91(2):435-442.
[9] BAGAROLLI R A, TOBAR N, OLIVEIRA A G, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice [J]. The Journal of Nutritional Biochemistry, 2017, 50:16-25.
[10] AMERICAN DIABETES A. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018 [J]. Diabetes Care, 2018, 41(Suppl 1): S13-S27.
[11] VIJAY-KUMAR M, AITKEN J D, CARVALHO F A, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5 [J]. Science, 2010, 328(5 975): 228-231.
[12] MAO B, LI D, ZHAO J, et al. Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice [J]. Journal of agricultural and food chemistry, 2015, 63(3): 856-863.
[13] BHAT M I, SINGH V K, SHARMA D, et al. Adherence capability and safety assessment of an indigenous probiotic strain Lactobacillus rhamnosus MTCC-5897 [J]. Microbial Pathogenesis, 2019, 130:120-130.
[14] CHEN P, ZHANG Q, DANG H, et al. Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin [J]. Nutrition, 2014, 30(9): 1 061-1 068.
[15] LIPSKA K J, WARTON E M, HUANG E S, et al. HbA1c and risk of severe hypoglycemia in type 2 diabetes: The diabetes and aging study[J]. Diabetes Care, 2013, 36(11): 3 535-3 542.
[16] CHEN P, ZHANG Q, DANG H, et al. Oral administration of Lactobacillus rhamnosus CCFM0528 improves glucose tolerance and cytokine secretion in high-fat-fed, streptozotocin-induced type 2 diabetic mice [J]. Journal of Functional Foods, 2014, 10:318-326.
[17] KIM S W, PARK K Y, KIM B, et al. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production [J]. Biochemical and Biophysical Research Communications, 2013, 431(2): 258-263.
[18] CHEN P, ZHANG Q, DANG H, et al. Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity [J]. Food Control, 2014, 35(1): 65-72.
[19] EJTAHED H S, MOHTADI-NIA J, HOMAYOUNI-RAD A, et al. Probiotic yogurt improves antioxidant status in type 2 diabetic patients [J]. Nutrition, 2012, 28(5): 539-543.
[20] LIM S M, JEONG J J, WOO K H, et al. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression [J]. Nutrition Research, 2016, 36(4): 337-348.
[21] LI C, DING Q, NIE S P, et al. Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats[J]. Joumal of agricuture and Food Chemistry, 2014, 62(49): 11 884-11 891.
[22] GARLAND S H. Short chain fatty acids may elicit an innate immune response from preadipocytes: A potential link between bacterial infection and inflammatory diseases [J]. Med Hypotheses, 2011, 76(6): 881-883.
[23] PENG L, LI Z R, GREEN R S, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers [J]. The Journal of Nutrition, 2009, 139(9): 1 619-1 625.
[24] MANDALIYA D K, SESHADRI S. Short chain fatty acids, pancreatic dysfunction and type 2 diabetes [J]. Pancreatology, 2019, 19(24): 617-622.
[25] MASLOWSKI K M, VIEIRA A T, NG A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 [J]. Nature, 2009, 461(7 268): 1 282-1 286.
[26] VIEIRA E L M, LEONEL A J, SAD A P, et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis [J]. J Nutr Biochem, 2012, 23(5): 430-436.
[27] PASCALE A, MARCHESI N, GOVONI S, et al. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: New insights into old diseases [J]. Current Opinion in Pharmacology, 2019, 49:1-5.
[28] ZHANG B, SUN W, YU N, et al. Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats [J]. Journal of Functional Foods, 2018, 46:256-267.
[29] LI C, NIE S P, DING Q, et al. Cholesterol-lowering effect of Lactobacillus plantarum NCU116 in a hyperlipidaemic rat model [J]. Journal of Functional Foods, 2014, 8:340-347.