Study on reuse of oil extraction wastewater from Heterotrophic chlorella heating acidolysis

  • BI Shenglei ,
  • WANG Linfeng ,
  • ZHAO Mingxing ,
  • LIU Yue ,
  • QIAO Jianyuan ,
  • ZHENG Bin
Expand
  • 1 (State Key Laboratory of Motor Vehicle Biofuel Technology,Henan Tianguan Group Co. Ltd., Nanyang 473000,China)
    2 (School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122,China)

Received date: 2019-05-30

  Online published: 2020-02-11

Abstract

The purpose of this study is to examine feasibility of replacing tap water with wastewater from the pyrolysis oil extraction as batching water. Using single factor analysis method and cell dry weight as the main index, the effects of applying different ratios of pyrolysis oil extraction wastewater in the media on the heterotrophic chlorella′s growth rate, and media′s pH and glucose content changes were investigated. The results showed that when reuse ratio of pyrolysis oil extraction wastewater was 10%, the growth rate remained the same as that of the control group (5 days), and the dry mass of algae reached 11.83 g/L, which was 108.73% of the control group. The pH change was consistent with the control group, which indicated that the reuse of extraction wastewater did not affect the main components of the medium, but had positive influence on the algae growth. The higher reuse ratio of the extraction wastewater, the greater positive effect on the glucose absorption and utilization rate. In conclusion, reuse of thermal acid wastewater may improve the fermentation efficiency, but when the reuse ratio was too big, a large number of salts and residual extractants would reduce the fermentation efficiency.

Cite this article

BI Shenglei , WANG Linfeng , ZHAO Mingxing , LIU Yue , QIAO Jianyuan , ZHENG Bin . Study on reuse of oil extraction wastewater from Heterotrophic chlorella heating acidolysis[J]. Food and Fermentation Industries, 2019 , 45(23) : 222 -226 . DOI: 10.13995/j.cnki.11-1802/ts.021232

References

[1] SANTYA G, MAHESWARAN T, YEE K F. Optimization of biodiesel production from high free fatty acid river catfish oil (Pangasius hypothalamus) and waste cooking oil catalyzed by waste chicken egg shells derived catalyst[J]. SN Applied Sciences, 2019,1(2):152.
[2] AVINASH A, SASIKUMAR P, MURUGESAN A. Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India- an interpretive structural modeling approach[J]. Renewable Energy, 2018,127:S410650348.
[3] SURENDHIRAN D, VIJAY M, SIRAJUNNISA A R. Biodiesel production from marine microalga Chlorella salina using whole cell yeast immobilized on sugarcane bagasse[J]. Journal of Environmental Chemical Engineering, 2014,2(3):1 294-1 300.
[4] 庄秀园, 黄英明,张道敬,等. 小球藻高附加值生物活性物质“小球藻热水提取物”的研究现状与展望[J]. 生物工程学报, 2015,31(1):24-42.
[5] 毕生雷, 张成明,金洪波,等. 抑菌剂在异养小球藻发酵过程中的应用[J]. 食品与发酵工业, 2015,41(3):70-74.
[6] 韩士群, 常志州,郑勤. 小球藻生长因子对啤酒和乳酸发酵的影响[J]. 食品科学, 2001(10):54-56.
[7] 吴娟, 姚伦广,毕生雷,等. 异养小球藻发酵液上清液回用的实验研究[J]. 中国油脂, 2018,43(5):104-109.
[8] 石卉, 吴晓芙,李科林,等. 生物柴油生产过程中废水的处理技术[J]. 中南林业科技大学学报, 2010,30(4):150-153.
[9] 石卉, 吴晓芙,周航,等. 生物柴油废水好氧吸附处理技术初探[J]. 水处理技术, 2010,36(11):85-88.
[10] 鲁龙, 毕生雷,金洪波,等. 强酸破碎小球藻细胞壁工艺条件的优化[J]. 食品与发酵科技, 2016,52(2):39-42;47.
[11] 毕生雷, 张成明,李十中,等. 异养小球藻半连续发酵生产油脂工艺探讨[J]. 食品与发酵科技, 2014,50(5):36-40;48.
[12] 杨威, 牛欢青,陈晓春,等. 正十六烷对节杆菌发酵产环磷酸腺苷的影响[J]. 生物加工过程, 2018,16(6):24-29.
[13] 万春艳, 赵海锋,赵谋明. 超高麦汁浓度酿造对啤酒酵母代谢的影响[J]. 食品与发酵工业, 2010,36(12):55-58.
[14] 杨艳玲, 李星,吕金監, 等. 常用水处理药剂在不同pH值下的微生物灭活性能[J]. 北京工业大学学报, 2006(9):832-835.
[15] 陈永勤. MS培养基凝固效果和高温灭菌后pH值变化的研究[J]. 湖北大学学报(自然科学版), 2001(3):280-283.
[16] 徐爱秋, 王梦芝,李世霞,等. 氨基酸模式对体外培养瘤胃微生物及发酵的影响[J]. 中国饲料, 2009(6):35-39.
[17] 殷亚军, 杨兵于. 麦汁充氧量和酵母添加量对pH值的影响[J]. 啤酒科技, 2005(11):42-44.
[18] 赵龙. 酵母抽提物醇沉组分的美拉德反应特性及应用研究[D]. 广州:华南理工大学, 2017.
[19] 冯镇. 乳酸菌自溶影响因素及机理研究[D]. 哈尔滨:东北农业大学, 2003.
[20] 保志华. 葡萄糖的检验中试剂用量及相关探讨[J]. 云南医药, 2014,35(3):382-384.
[21] 龚卫华, 向卓亚,叶发银,等. 笋壳醋酸木质素对葡萄糖透析延迟指数、发酵特性及酶活力的影响[J]. 食品与发酵工业, 2017,43(12):55-60.
[22] 贺海涛, 张洪涛,曲娟娟,等. 双酶耦合催化法合成特定聚合度β-1,3-葡寡糖研究[J]. 食品与发酵工业, 2018,44(5):1-9.
Outlines

/