Citrate enhanced intracellular glutamate production in Saccharomyces cerevisiae

  • TANG Chao ,
  • LIU Licong ,
  • CHEN Xiong ,
  • DAI Jun ,
  • LI Xin ,
  • YAO Juan ,
  • ZHENG Guobin ,
  • WANG Zhi
Expand
  • 1 (Key Laboratory Fermentation Engineering (Ministry of Education), Hubei Provincial Food Fermentation Engineering Technology Research Center, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Miceobiology, Hubei University of Technology, Wuhan 430068,China)
    2 (Hubei Province key laboratory of yeast function, Angel Yeast Co., Ltd, Yichang 443003,China)

Received date: 2019-03-01

  Online published: 2019-09-23

Abstract

In order to enhance the freshness of yeast extract to better meet its needs in food industries, the effects of sodium citrate-molasses feeding strategy on the growth and intracellular glutamate synthesis in Saccharomyces cerevisiae J-5 were studied at a 10 L fermenter level. During molasses-fed fermentation, there was a significant overflow metabolism, and the ethanol concentration reached 22 g/L in 10 h. Besides, the dry weight and intracellular glutamate reached 36.36 g/L in 21 h and 2.28% in 18 h, respectively. Adding 1.8 L molasses that contained 72 g sodium citrate from 3 h to 14 h at an initial rate of 50 mL/h with an increasing flow rate of 50 mL every 2 h, the carbon overflow metabolism was effectively reduced. Moreover, the ethanol concentration in 10 h was only 54.5% of the control. Furthermore, the intracellular glutamate synthesis efficiency significantly improved, and the peak content reached 3.7% in 11 h, which was 62.3% higher than that of the control. In addition, the parameter of citrate content/the maximal cell dry weight under the optimized condition was 0.238±0.007, which provides a reference for industrial scale-up experiments.

Cite this article

TANG Chao , LIU Licong , CHEN Xiong , DAI Jun , LI Xin , YAO Juan , ZHENG Guobin , WANG Zhi . Citrate enhanced intracellular glutamate production in Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2019 , 45(16) : 48 -53 . DOI: 10.13995/j.cnki.11-1802/ts.020402

References

[1] 朱曼利, 郭会明,洪厚胜,等. 酵母抽提物的研究概况[J]. 中国调味品, 2017, 42(2):175-180.
[2] 洪镭, 汪晓伟,陈颖秋,等. 酵母抽提物鲜味剂的综述[J]. 轻工科技, 2010, 26(6):17-18.
[3] 林宗英, 林民山,郭霏霏. 纯天然酵母粉的制备与应用[J]. 现代食品, 2017(23):101-103.
[4] GOEL A, LEE J, DOMACH M M, et al. Metabolic fluxes, pools, and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux.[J]. Biotechnology & Bioengineering, 1999, 64(2):129-134.
[5] 钱敏, 白卫东,赵文红,等. 酵母抽提物中游离氨基酸的测定与分析[J]. 现代食品科技, 2012, 28(7):878-881.
[6] MAGASANIK B. Ammonia assimilation by Saccharomyces cerevisiae[J]. Eukaryotic Cell, 2003, 2(5):827-829.
[7] 王燕, 宋香, 杨平平,等. 谷氨酸生产菌S9114中的谷氨酸脱氢酶的研究[J]. 生物工程学报, 2003, 19(6):725-729.
[8] BENNETZEN J L, HALL B D. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase[J]. J biol chem, 1982, 257(6):3 018-3 025.
[9] KAJIHATA S, MATSUDA F, YOSHIMI M, et al. (13)C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced crabtree effect [J]. Journal of Bioscience & Bioengineering, 2015, 120(2):140-144.
[10] FAYYADKAZAN M, FELLAR A, BODO E, et al. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs [J]. Molecular Microbiology, 2016, 99(2):360-379.
[11] CUETOROJAS H F, SEIFAR R M, PIERICK A T, et al. In vivo analysis of NH+4 transport and central nitrogen metabolism in Saccharomyces cerevisiae during aerobic nitrogen-limited growth[J]. Applied & Environmental Microbiology, 2016, 82(23):6 831-6 845.
[12] 杜军, 刘辉,徐庆阳,等. 基于途径分析的L-谷氨酸发酵条件优化[J]. 食品与发酵工业, 2007, 33(11):9-12.
[13] 宋翔, 谢希贤,徐庆阳,等. 柠檬酸钠对L-谷氨酸发酵代谢流迁移的影响[J]. 天津科技大学学报, 2009, 24(2):5-8.
[14] LIAO J C, HOU S Y, CHAO Y P. Pathway analysis, engineering, and physiological considerations for redirecting central metabolism[J]. Biotechnology & Bioengineering, 1996, 52(1):129-140.
[15] 余秉琦. 谷氨酸棒杆菌的乙醛酸循环与L-谷氨酸合成[D]. 无锡:江南大学, 2005.
[16] 陈宁, 刘辉. 柠檬酸钠对L-亮氨酸发酵代谢流分布的影响[J]. 高校化学工程学报, 2008, 22(3):118-123.
[17] 刘新星, 陈双喜,储炬,等. 柠檬酸钠对枯草杆菌生长代谢及肌苷积累的影响[J]. 微生物学报, 2004, 44(5):627-630.
[18] 朱广跃, 杨卫,吴健,等. HPLC法定量分析微生物法制备液中产物γ-氨基丁酸和底物L-谷氨酸[J]. 食品科学, 36(24).
[19] 程勇, 陈玲,邓晓春. 柱前衍生HPLC法测定烟叶中20种游离氨基酸含量[J]. 烟草科技, 2010, 47(8):35-38.
[20] 申希峰, 黄杰涛,张莲姬. 蒽酮-硫酸法测定榛花多糖含量条件的优化[J]. 食品研究与开发, 2017, 38(18):150-154.
[21] 杜祎, 李敬龙,张金玲,等. 一种快速检测露酒中乙醇含量的新技术[J]. 酿酒科技, 2015(12):71-73.
[22] 王英臣, 安家彦. 酒精发酵的酵母比生长速率与代谢产物及底物的关系[J]. 酿酒, 2005, 32(1):28-30.
[23] 王亮. 酿酒酵母高浓度乙醇连续发酵体系振荡行为[D]. 大连:大连理工大学, 2014.
[24] 余秉琦, 沈微,王正祥,等. 谷氨酸棒杆菌的乙醛酸循环与谷氨酸合成[J]. 生物工程学报, 2005, 21(2):270-274.
[25] 汤佳鑫. 啤酒酵母在不同碳源条件下中间代谢途径关键酶活性分析[D]. 大连:大连工业大学, 2008.
[26] CORTASSA S, AON M A. Metabolic control analysis of glycolysis and branching to ethanol production in chemostat cultures of Saccharomyces cerevisiae, under carbon, nitrogen, or phosphate limitations[J]. Enzyme & Microbial Technology, 1994, 16(9):761-770.
Outlines

/