Sorghum distiller's grain is a cellulosic by-product from Chinese liquor fermentation. Dark fermentation is considered to be one of the most promising approaches for treating sorghum distiller's grain, along with biohydrogen production. To improve the hydrogen yield from sorghum distiller's grain, saccharification of sorghum distiller's grain and the hydrogen production rate were investigated. Results showed that the optimum approach for sorghum distiller's grain saccharification was to use enzymatic method, and the corresponding solid/liquid ratio and cellulase amount were 1:15 and 4 000 U/g, respectively. The obtained sugar yield reached 17.21%, which was 341.3% higher than that of the control group. Results of dark fermentation illustrated that a higher hydrogen yield (51.56 mL/g) was obtained with the addition of cellulase and amylase. Results of the scanning electron microscope showed that the surface structure of distiller's grains was significantly destroyed by the additional cellulase, indicating the conversion of cellulose to sugar was achieved.
YANG Li
,
SONG Yang
,
XU Xiaoyi
,
ZHANG Cunsheng
. Saccharification of sorghum distiller's grain and its performance for hydrogen production via dark fermentation[J]. Food and Fermentation Industries, 2020
, 46(1)
: 99
-103
.
DOI: 10.13995/j.cnki.11-1802/ts.021751
[1] LI D, YUAN Z H, SUN Y, et al. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation [J]. International Journal of Hydrogen Energy, 2009, 34(2): 812-820.
[2] SHOW K Y, LEE D J, CHANG J S. Bioreactor and process design for biohydrogen production[J]. Bioresource Technology, 2011, 102(18): 8 524-8 533.
[3] 裴芳霞. 超声波辅助黄孢原毛平革菌对酒糟酶解糖化的影响[D]. 兰州: 兰州理工大学, 2016.
[4] 马文鹏, 裴芳霞, 任海伟, 等. 白酒糟糖化降解的预处理技术研究进展[J]. 酿酒科技, 2015(12): 90-95.
[5] 王聪. 酒糟与甜高粱秸秆混合固态发酵品质及微生物多样性研究[D]. 兰州: 兰州理工大学, 2018.
[6] 刘姗, 杨柳, 何述栋, 等. 酶解黄酒糟对料酒发酵的影响[J]. 食品与发酵工业, 2019, 45(3): 148-152;160.
[7] 马文鹏, 裴芳霞, 任海伟, 等. 双酶复合水解酒糟制备可发酵糖的工艺研究[J]. 酿酒科技, 2016(4): 89-92.
[8] 刘浩. 亚硫酸氢盐预处理提高阔叶木纤维素的可水解性[D]. 广州: 华南理工大学, 2011.
[9] 亓伟, 张素平, 任铮伟, 等. 酸浓度对水解液中葡萄糖分解反应的影响研究[J]. 太阳能学报, 2008, 29(11): 1 395-1 398.
[10] 徐栋梁, 任浩. 木质素对纤维素酶水解抑制作用的研究进展与展望[J]. 中华纸业, 2017, 38(20): 19-24.
[11] 任海伟, 裴芳霞, 李金平, 等. 混合酸催化水解白酒丢糟的研究[J]. 太阳能学报, 2014, 35(11): 2 230-2 235.
[12] 任海伟, 徐娜, 李金平, 等. 化学预处理提高酒糟生物质酶解糖化效果[J]. 农业工程学报, 2014, 30(16): 239-246.
[13] 张全国, 孙堂磊, 荆艳艳, 等. 玉米秸秆酶解上清液厌氧发酵产氢工艺优化[J]. 农业工程学报, 2016, 32(5): 233-238.
[14] 聂艳秋. 废水产氢产酸/同型产乙酸耦合系统厌氧发酵产酸工艺及条件优化[D]. 无锡: 江南大学, 2007.
[15] 宋梓梅. 鸡粪与果蔬废弃物混合厌氧制氢特性研究[D]. 咸阳: 西北农林科技大学, 2018.