Taxonomy and functions of Bacillus velezensis: a review

  • ZHANG Caiwen ,
  • CHENG Kun ,
  • ZHANG Xin ,
  • LIU Bo ,
  • DU Haibo ,
  • YAO Su
Expand
  • (China National Research Institute of Food and Fermentation Industries, China Center of Industrial CultureCollection, Beijing 100015, China)

Received date: 2019-04-02

  Online published: 2019-10-24

Abstract

In recent years, the applications of Bacillus velezensis, Bacillus methylotrophicus and Bacillus amyloliquefaciens subsp. plantarum in agriculture, industry, food processing and environmental protection etc. are increasing. However, previous researches have shown that B. methylotrophicus and B. amyloliquefaciens subsp. plantarum are heterotypic synonyms of B. velezensis. In order to clarify the taxonomic status of B. velezensis, the correlations between B. velezensis and B. methylotrophicus, as well as between B. velezensis and B. amyloliquefaciens subsp. plantarum were sorted, and the functions of B. velezensis were reviewed to provide a reference for deep research and application of B. velezensis.

Cite this article

ZHANG Caiwen , CHENG Kun , ZHANG Xin , LIU Bo , DU Haibo , YAO Su . Taxonomy and functions of Bacillus velezensis: a review[J]. Food and Fermentation Industries, 2019 , 45(17) : 258 -265 . DOI: 10.13995/j.cnki.11-1802/ts.020737

References

[1] RUIZ-GARCÍA C, BÍJAR V, MARTÍNEZ-CHECA F, et al. Bacillus velezensis sp. nov. a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1): 191-195.
[2] 蔡高磊, 张凡,欧阳友香,等. 贝莱斯芽孢杆菌(Bacillus velezensis)研究进展[J]. 北方园艺, 2018(12): 162-167.
[3] RUIZ-GARCÍA C, BÉJAR V, MARTÍNEZ-CHECA F, et al. Bacillus velezensis sp. nov. a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1): 191-195.
[4] 杨可, 郑柯斌,黄晓慧,等. 海洋生境贝莱斯芽孢杆菌TCS001的鉴定及抑真菌活性[J]. 农药学学报, 2018, 20(3): 333-339.
[5] 孙平平, 崔建潮,贾晓辉,等. 贝莱斯芽孢杆菌L-1对梨灰霉和青霉病菌的抑制作用评价及全基因组分析[J]. 微生物学报, 2018, 58(9): 1 637-1 646.
[6] GAO Z, ZHANG B, LIU H, et al. Identification of endophytic Bacillus velezensis, ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biological Control, 2017, 105: 27-39.
[7] 刘波, 陶天申,葛慈斌,等. 芽胞杆菌. 第一卷,中国芽胞杆菌研究进展[M]. 北京:科学出版社, 2015.
[8] 刘国红,刘波,王阶平,等. 芽胞杆菌分类与应用研究进展[J]. 微生物学通报, 2017, 44(4): 949-958.
[9] 张妙宜, 云天艳,周登博,等. 甲基营养型芽胞杆菌的研究进展[J]. 热带农业科学, 2017, 37(9): 66-71.
[10] WAYNE L G D, BRENNER D J, COLWELL R R, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics[J]. International Committee on Systematic Bacteriology, 1987, 37: 463-464.
[11] WANG L T, LEE F L, TAI C J, et al. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(3): 671-675.
[12] MADHAIYAN M, POONGUZHALI S, KWON S W, et al. Bacillus methylotrophicus sp. nov. a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(10): 2 490-2 495.
[13] BORRISS R, CHEN X H, RUECKERT C, et al. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: A proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(8): 1 786-1 801.
[14] DUNLAP C A, KIM S J, KWON S W, et al. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(7):2 104.
[15] GORIS J, KONSTANTINIDIS K T, KLAPPENBACH J A, et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(1):81-91.
[16] CHUNG E J, HOSSAIN M T, KHAN A, et al. Bacillus oryzicola sp. nov. an endophytic bacteriumi solated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice[J].Plant Pathology Journal, 2015, 31(2):152-164.
[17] DUNLAP C, KIM S J, KWON S W, et al. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens, Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of of Bacillus velezensis based on phylogenomics[J]. International Journal of Systematic and Evolutionary Microbiology,2016, 66:1 212-1 217.
[18] FAN B, BLOM J, KLENK H P,et al. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex[J]. Frontiers in Microbiology, 2017, 8:22.
[19] CHOI S K, JEONG H, KLOEPPER J W, et al. Genome Sequence of Bacillus amyloliquefaciens GB03, an active ingredient of the first commercial biological control product[J]. Genome Announcements, 2014, 2(5): e01092.
[20] KINSELLA K, SCHULTHESS C P, MORRIS T F, et al. Rapid quantification of Bacillus subtilis, antibiotics in the rhizosphere[J]. Soil Biology and Biochemistry, 2009, 41(2):374-379.
[21] 张欣,刘勇,李金霞,等. 中性蛋白酶生产菌种AS1.398的多相复核鉴定[J]. 食品与发酵工业, 2015, 41(5):54-58.
[22] 杨胜清,张帆,马贵龙. 贝莱斯芽孢杆菌S6拮抗物质分离纯化及抑菌机理[J]. 农药, 2017,56(9):645-648.
[23] PAN H Q, LI Q L, HU J C. The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent[J]. Journal of Biotechnology, 2017, 247: 25-28.
[24] KIM S Y, LEE S Y, WEON H Y, et al. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste[J]. Journal of Biotechnology, 2017, 241: 112-115.
[25] 蔡长平, 黄军,曾艳,等. 一株辣椒内生抗细菌的筛选及初步鉴定[J]. 湖南农业科学, 2018,394(7): 9-12.
[26] CHEN X H, KOUMOUTSI A, SCHOLZ R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens[J]. Journal of Biotechnology, 2009, 140(1): 27-37.
[27] BLOM J, RUECKERT C, NIU B, et al. The complete genome of Bacillus amyloliquefaciens subsp. plantarum CAU B946 contains a gene cluster for nonribosomal synthesis of iturin A[J]. Journal of Bacteriology, 2012, 194(7): 1 845-1 846.
[28] HE P, HAO K, BLOM J, et al. Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites[J]. Journal of Biotechnology, 2013, 164(2): 281-291.
[29] 陈亮, 李瑞静,秦素雅,等. 小麦赤霉病拮抗菌株筛选及其抑制作用研究[J]. 中国植保导刊, 2017, 37(5): 12-17.
[30] CHEN L, HENG J, QIN S, et al. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight[J]. Plos One, 2018,13(6): e0198560.
[31] CAO Y, ZHANG Z, LING N, et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots[J]. Biology and Fertility of Soils, 2011, 47(5): 495-506.
[32] QIU M H, LI S Q, ZHOU X, et al. De-coupling of root-microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness[J]. Biology and Fertility of Soils, 2014, 50(2):217-224.
[33] LI Q, LI Z F, LI X X, et al. FtsEX-CwlO regulates biofilm formation by a plant-beneficial rhizobacterium Bacillus velezensis SQR9[J]. Research in Microbiology, 2018, 169(3): 166-176.
[34] MENG Q X, JIANG H H, HANSON L E, et al. Characterizing a novel strain of Bacillus amyloliquefaciens BAC03 for potential biological control application[J]. Journal of Applied Microbiology, 2012, 113(5): 1 165-1 175.
[35] MENG Q, HANSON L E, DOUCHES D, et al. Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens BAC03 and other biomaterials[J]. Biological Control, 2013, 67(3): 373-379.
[36] MENG Q, JIANG H, HAO J J. Effects of Bacillus velezensis, strain BAC03 in promoting plant growth[J]. Biological Control, 2016, 98:18-26.
[37] YI Y L, ZHANG Z H, ZHAO F, et al. Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus[J]. Fish and Shellfish Immunology. 2018, 78: 322-330.
[38] REGASSA A B, TAEGYU C, YONG S L, et al. Supplementing biocontrol efficacy of Bacillus velezensis, against Glomerella cingulata[J]. Physiological and Molecular Plant Pathology, 2018, 102: 173-179.
[39] PANDIN C, LE D C, DESCHAMPS J, et al. Complete genome sequence of Bacillus velezensis QST713: a biocontrol agent that protects Agaricus bisporus crops against the green mould disease[J]. Journal of Biotechnology, 2018, 278: 10-19.
[40] LIU G, KONG Y, FAN Y, et al. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria[J]. Journal of Biotechnology, 2017, 249:20-24.
[41] JIN Q, JIANG Q, LEI Z, et al. Complete genome sequence of Bacillus velezensis, S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities[J]. Journal of Biotechnology, 2017, 259:199-203.
[42] KIM S Y, SONG H, SANG M K, et al. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid[J]. Journal of Biotechnology, 2017, 4: 250-250.
[43] CAI X C, LIU C H, WANG B T, et al. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease[J]. Microbiological Research, 2017, 196: 89-94.
[44] LEE H H, PARK J, LIM J Y, et al. Complete genome sequence of Bacillus velezensis G341, a strain with a broad inhibitory spectrum against plant pathogens[J]. Journal of Biotechnology, 2015, 211: 97-98.
[45] PALAZZINI J M, DUNLAP C A, BOWMAN M J, et al. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles[J]. Microbiological Research, 2016, 192: 30-36.
[46] 姜乾坤, 彭阁,王瑞,等. 抗青枯内生细菌的筛选及其对烟草青枯病的防治效果[J]. 中国烟草科学, 2017, 38(5): 13-17.
[47] 金疏桐, 王祖华,徐启燃,等. 内生贝莱斯芽胞杆菌生物拮抗活性的研究[J]. 中国微生态学杂志, 2017, 29(4): 385-389.
[48] NAM M H, KIM H S, LEE H D, et al. Biological control of anthracnose crown rot in strawberry using Bacillus velezensis NSB-1[J]. Acta Horticulturae, 2014, 1049(1 049): 685-688.
[49] 孙平平, 崔建潮,贾晓辉,等. 贝莱斯芽孢杆菌L-1对梨灰霉和青霉病菌的抑制作用评价及全基因组分析[J]. 微生物学报,2018, 58(9): 1 637-1 646.
[50] 杨可, 郑柯斌,黄晓慧,等. 海洋生境贝莱斯芽孢杆菌TCS001的鉴定及抑真菌活性[J]. 农药学学报, 2018, 20(3): 333-339.
[51] 刘东岳, 李敏,孙文献,等. 拮抗尖孢镰刀菌的PGPR筛选与抑菌机制的初步研究[J]. 植物病理学报, 2017, 47(5): 704-715.
[52] 熊涛, 唐晓星,黄涛,等. 产蛋白酶兼性厌氧菌株的筛选、酶学性质及发酵豆粕应用探究[J]. 食品科学, 2014, 35(9): 162-167.
[53] 胡宝东, 邱树毅,周鸿翔,等. 酱香型大曲的理化指标、水解酶系、微生物产酶的关系研究[J]. 现代食品科技, 2017, 33(2): 99-106.
[54] 江波, 张涛,彭英云,等. 一种甲基营养芽孢杆菌及其发酵生产γ-聚谷氨酸的方法:中国, 102268389A[P]. 2011-12-07.
[55] 陆培志. 生物表面活性剂在污水处理中的应用及前景[J]. 资源节约与环保, 2018, 198(5): 110-114.
[56] 张元峰. 生物表面活性剂在环境生物工程中的应用[J]. 农村科学实验, 2018, 4: 101.
[57] 方晓航, 陈佳亮,刘晓文,等. 一株吸附及强化植物提取重金属的细菌JY-04及其应用:中国, 104593292A[P]. 2015-05-06.
[58] 谭泽文, 郜晨,张逸凡,等. 甲基营养型芽孢杆菌的分离鉴定及在防蝇产蛆环境防治中的应用[J]. 应用与环境生物学报, 2018, 24(3): 631-635.
[59] 荣璐阁, 孙丽娜,刘春跃,等. 表面活性剂强化甲基营养型芽孢杆菌修复柴油污染土壤[J]. 环境工程学报, 2018, 12(3): 885-892.
[60] 曹凤明, 杨小红,马鸣超,等. 枯草芽孢杆菌近缘种群鉴定方法研究进展[J]. 微生物学通报, 2014, 41(5): 968-974.
[61] SHAFI J, TIAN H, JI M. Bacillus species as versatile weapons for plant pathogens: a review[J]. Biotechnology and Biotechnological Equipment, 2017, 31(3): 446-459.
[62] 刘磊,梁昌聪,曾迪,等. 芽胞杆菌次生代谢产物及其在土传病害防控中的应用研究进展[J]. 热带作物学报, 2017, 38(4):775-782.
[63] 马佳, 李颖,胡栋,等. 芽胞杆菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 2018, 34(4): 639-648.
Outlines

/