Research progress on the application of mid-infrared reflectancespectroscopy (MIRS) in food detection

  • LAN Weiqing ,
  • ZHOU Dapeng ,
  • LIU Dayong ,
  • SUN Xiaohong ,
  • FENG Haojie ,
  • XIE Jing
Expand
  • 1 (College of Food Science and Technology,Shanghai Ocean University,Shanghai 201306,China)
    2 (Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306,China)
    3 (National Experimental Teaching Demonstration Center for Food Science and Engineering(Shanghai Ocean University),Shanghai 201306,China)
    4 (Jiangsu Zhongyang Group Limited by Share Ltd, Nantong 226600,China)

Received date: 2019-05-04

  Online published: 2019-10-24

Abstract

Mid-infrared reflectance spectroscopy (MIRS), as one of the food analysis and detection techniques, uses the properties of light absorption, scattering, reflection and transmission to determine its component content. With wide applications in the field of food science, MIRS can perform the analysis from gas to liquid, from homogenate to powder, from solid materials to biological tissues. As a consequence, samples can be quickly and accurately detected and qualitatively and quantitatively analyzed. It has the characteristics of rapid, non-destructive, safe and efficient, and simultaneous determination of multi-components. Based on the brief introduction of working principle of MIRS and the main advantages as well as disadvantages of common food quality detection methods, this paper also summarized the application examples and research progress of MIRS in origin traceability, adulteration, variety identification and quality detection. The main problems and solutions of MIRS were put forward, its development prospects were also prospected.

Cite this article

LAN Weiqing , ZHOU Dapeng , LIU Dayong , SUN Xiaohong , FENG Haojie , XIE Jing . Research progress on the application of mid-infrared reflectancespectroscopy (MIRS) in food detection[J]. Food and Fermentation Industries, 2019 , 45(17) : 266 -271 . DOI: 10.13995/j.cnki.11-1802/ts.021000

References

[1] ALIAKBARZADEH G, SERESHTI H, PARASTAR H. Fatty acids profiling of avocado seed and pulp using gas chromatography-mass spectrometry combined with multivariate chemometric techniques[J].Journal of the Iranian Chemical Society, 2016, 13(10):1 905-1 913.
[2] 马悦,赵乐凤,吕子燕,等.高效液相色谱-四极杆-静电场轨道阱高分辨质谱分析桑葚中黄酮类和多酚类物质[J].质谱学报, 2017, 38(1):45-51.
[3] SHI L K, ZHANG M M, LIU Y L. Concentration and survey of phthalic acid esters in edible vegetable oils and oilseeds by gas chromatography mass spectrometry in China [J]. Food Control, 2016, 68:118-123.
[4] 孙兴权,赵禹,杨春光,等.液相色谱-高分辨质谱联用技术在食品欺诈检测鉴别中的应用[J].色谱, 2016,34(7):647-656.
[5] 顾文,孙志兵,李建珍.高效液相色谱法同时测定保健食品中低聚果糖和低聚木糖[J].中国微生态学杂志,2018,(12):1 396-1 401.
[6] 温家欣,吴凤丹,曹雅静,等.高效液相色谱-串联质谱法测定蜂胶及以其为原料的保健食品中的氯霉素[J].色谱,2018,36(12):1 284-1 289.
[7] 李井涛,孙迪,刘洋.气相色谱法测定食用油中BHA和BHT残留量的对比研究[J].食品安全质量检测学报,2018,9(1):173-177.
[8] 程天赋,蒋奕,张翼飞,等.基于低场核磁共振研究不同解冻方式对冻猪肉食用品质的影响[J].食品科学,2019,40(7):20-26.
[9] 李冰莲,杨光昕,谷麟.酶联免疫法检测海洋贝类中的荧蒽[J].分析试验室,2019,38(2):196-201.
[10] MACHADO J C, FARIA M A, et al. Varietal discrimination of hop pellets by near and mid infrared spectroscopy [J]. Talanta, 2017:S0039914017312328.
[11] 刘燕德,胡军,唐天义,等.中红外光谱对甲醇汽油甲醇含量检测研究[J].光谱学与光谱分析,2019,39(2):459-464.
[12] 高亚文,欧昌荣,汤海青,等.光谱技术在水产品鲜度评价中的应用[J].核农学报,2016,30(11):2 210-2 217.
[13] 梁秋曼,南良康,陈明新,等.利用中红外光谱MIR预测奶牛饲料效率的研究进展[J].中国奶牛,2018(10):5-8.
[14] CLARK C J, COONEY J M, HOPKINS W A, et al. Global mid-infrared prediction models facilitate simultaneous analysis of juice composition from berries of actinidia, ribes, rubus and vaccinium species [J]. Food Analytical Methods, 2018,11(11):3 147-3 160.
[15] HAITAO S, YAOGENG L, LUCIANA L P, et al. Evaluation of near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy techniques combined with chemometrics for the determination of crude protein and intestinal protein digestibility of wheat[J]. Food Chemistry, 2019,272:507-513.
[16] GORDON R, CHAPMAN J, POWER A, et al. Unfrazzled by fizziness: identification of beers using attenuated total reflectance mid-infrared spectroscopy and multivariate analysis [J]. Food Analytical Methods, 2018,11(9):2 360-2 367.
[17] GORDON R, CHAPMAN J, POWER A, et al. Mid-infrared spectroscopy coupled with chemometrics to identify spectral variability in Australian barley samples from different production regions[J]. Journal of Cereal Science, 2019, 85:41-47.
[18] HU Leqian, YIN Chunling, MA Shuai, et al. Assessing the authenticity of black pepper using diffuse reflectance mid-infrared Fourier transform spectroscopy coupled with chemometrics[J]. Computers and Electronics in Agriculture, 2018, 154:491-500.
[19] GORDON R, CHAPMAN J, POWER A, et al. Mid-infrared spectroscopy coupled with chemometrics to identify spectral variability in Australian barley samples from different production regions[J]. Journal of Cereal Science, 2019, 85:41-47.
[20] URÍOOKOVÁ V, SÁDECKÁ J. Determination of geographical origin of alcoholic beverages using ultraviolet , visible and infrared spectroscopy:A review[J].Spectrochimica Acta, Part A:Molecular and Biomolecular Spectroscopy,2015,10(3):131
[21] 伶俐,李梦华,李景明,等.近、中红外光谱法融合判定葡萄酒产地[J].光谱学与光谱分析,2014,34(10):2 662-2 666.
[22] 吕伟奇,张霁,赵艳丽,等.不同产地黄硬皮马勃的红外光谱鉴别方法研究[J].河南农业科学,2016,45(1):104-107;142.
[23] 朱哲燕,张初,刘飞,等.基于中红外光谱分析技术的香菇产地识别研究[J].光谱学与光谱分析, 2014, 34(3):664-667.
[24] 龚海燕,罗晓,雷敬卫,等.不同产地金银花中红外光谱分析[J].中医学报,2016,31(1):96-98.
[25] GEORGOULI K, MARTINEZ D R, KOIDIS J A. Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data[J].Food Chemistry,2017,217:735-742.
[26] 张婧,单慧勇,杨仁杰,等.基于近-中红外相关谱融合判定掺伪芝麻油[J/OL].光子学报,2017,1-7.
[27] 位丽娜,刘翠玲,赵琦,等.基于中红外光谱技术的芝麻油掺伪检测[J].食品科技,2015,12:265-271.
[28] 周密,宋哲,龚蕾,等.傅里叶变换红外光谱鉴别芝麻酱中掺杂花生酱[J].中国调味品,2018,43(10):160-163.
[29] HORN B, ESSLINGER S, PFISTER M, et al. Non-targeted detection of paprika adulteration using mid-infrared spectroscopy and one-class classification-Is it data preprocessing that makes the performance?[J]. Food Chemistry, 2018, 257:112-119.
[30] JIA L, YU W, NAN D, et al. Authentication of lotus root powder adulterated with potato starch and/or sweet potato starch using Fourier transform mid-infrared spectroscopy [J]. Food Chemistry, 2013, 141(3):3 103-3 109.
[31] BETTINA H, SUSANNE E, MICHAEL P, et al. Non-targeted detection of paprika adulteration using mid-infrared spectroscopy and one-class classification-Is it data preprocessing that makes the performance[J]. Food Chemistry, 2018, 257:112-119.
[32] CAROLINA S W M, MARCELO M S, et al. Detection of adulterants in grape nectars by attenuated total reflectance Fourier-transform mid-infrared spectroscopy and multivariate classification strategies [J]. Food Chemistry, 2018, 266:254-261.
[33] GALLARDO-VELÁZQUEZ T, OSORIO-REVILLA G, ZUÑIGA-DE L M, et al. Application of FTIR-ATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys [J]. Food Research International, 2009, 42(3):313-318.
[34] KAROUI R, LEFUR B, GRONDIN C, et al.Mid-infrared spectroscopy as a newtool for the evaluation of fish freshness [J]. International Journal of Food Science and Technology, 2007, 42(1):57-64.
[35] ALAMPRESE C, CASIRAGHI E.Application of FT-NIR and FT-IRspectroscopy to fish fillet authentication[J].LWT-Food Science and Technology,2015,63(1):720-725.
[36] 吕慧茹,刘刚,时有明,等.傅里叶变换红外光谱结合SIMCA对宣威火腿鉴别研究[J].光谱学与光谱分析,2018,38(S1):79-80.
[37] 李铁梅,刘刚,时有明,等.六种速溶咖啡的傅里叶变换红外光谱鉴别研究[J].光谱学与光谱分析,2018,38(S1):71-72.
[38] 方慧,张昭,王海龙,等.基于中红外光谱技术鉴别转基因大豆的方法研究[J].光谱学与光谱分析,2017,37(3):760-765.
[39] MANUELIAN C L, PENASA M, GIANGOLINI G, et al. Short communication: Fourier-transform mid-infrared spectroscopy to predict coagulation and acidity traits of sheep bulk milk[J].Journal of Dairy Science, 2019,102(3):1 927-1 932.
[40] ASSIS C, HEBERT V P, VICTORIA S A, et al. Combining mid infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends[J].Food Chemistry, 2019, 281: 71-77.
[41] HERNÁNDEZ-MARTÍNEZ M, GALLARDO-VELÁZQUEZ T, et al. Application of MIR-FTIRspectroscopy and chemometrics to the rapid prediction of fish fillet quality [J]. CyTA-Journal of Food, 2014, 12(4):369-377.
[42] 吴雪辉,王泽富.红外光谱快速测定油茶籽油中主要功能活性成分含量的模型建立与评价[J].中国油脂,2018,43(10):140-143.
[43] 孙恒,金航,胡强,等.红外光谱结合化学计量学快速预测铁皮石斛中总黄酮含量[J].光谱学与光谱分析,2018,38(6):1 702-1 707.
[44] 陈美林,陈业,张玉婷,等.衰减全反射中红外光谱测定马铃薯中可溶性蛋白含量[J].中国粮油学报,2018,33(12):118-126.
[45] NIERO G, PENASA M, COSTA A, et al. Total antioxidant activity of bovine milk: phenotypic variation and predictive ability of mid-infrared spectroscopy [J]. International Dairy Journal, 2018.
[46] 高文佳,张海华,马雪巍,等.基于中红外光谱法快速检测蜂蜜中还原糖的研究[J].中国蜂业,2017,68(5):52-54.
[47] 叶沁,赵紫薇,徐明雅,等.基于中红外漫反射光谱技术测定精米中直链淀粉含量的研究[J].中国粮油学报,2018,33(2):115-119;127.
[48] 周玲玲,姚志湘,粟晖,等. ATR/FTIR法检测植物油的品质指标[J].中国油脂, 2016, 41(4):96-99.
[49] EDITHA G, OLE W, SASCHA R, et al. Determining quality parameters of fish oils by means of 1H nuclear magnetic resonance, mid-infrared, and near-infrared spectroscopy in combination with multivariate statistics [J]. Food Research International,2018,106:116-128,
[50] SINELLI N, CERRETANI L, DI E V, et al. Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity [J]. Food Research International, 2010, 43(1):369-375.
[51] GAMBETTA J M, COZZOLINO D, BASTIAN S E P, et al. Classification of chardonnay grapes according to geographical indication and quality grade using attenuated total reflectance mid-infrared spectroscopy[J]. Food Analytical Methods, 2019,12(1):239-245.
[52] CRAIG P A, FRANCA S A, OLIVEIRA S L. Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees [J]. Food Chemistry, 2012, 132(3):1 368-1 374.
Outlines

/