Construction of multiplex fluorescence SSR marker database for malt varieties

  • ZHANG Zhijun ,
  • YUE Jie ,
  • YIN Hua
Expand
  • State Key Lab of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao 266100, China

Online published: 2019-11-06

Abstract

In order to improve the identification efficiency of malt varieties and purity, thus reduce the cost of detection, SSR (simple sequence repeats) fluorescent markers were used to perform core primer screening, multiplex PCR and fingerprint data analysis on 24 malt varieties. A suitable multiple fluorescence detection system for malt identification was constructed. 12 pairs of primers were selected from the polymorphic primers screened in the previous stage for combination design. The multiplex PCR system was constructed by optimizing the primer concentration and annealing temperature, and 3 primer combinations were successfully amplified. According to the principle of fingerprint identification, HVM68, EBmag0007 and Bmac755 were identified as the core primers for cultivar differentiation, with each pair producing an average of 8.3 alleles. Using 3 pairs of core primers to construct a malt species fingerprint database, fingerprint coding could achieve rapid differentiation of all 24 malt varieties. This study established an accurate, rapid and high-throughput method for the identification and detection of malt varieties, providing technical support and quality assurance for beer companies in malt procurement and brewing formulations.

Cite this article

ZHANG Zhijun , YUE Jie , YIN Hua . Construction of multiplex fluorescence SSR marker database for malt varieties[J]. Food and Fermentation Industries, 2019 , 45(18) : 50 -57 . DOI: 10.13995/j.cnki.11-1802/ts.020341

References

[1] ROMERRO C, PEDRYC A, MUNOZ V. Genetic diversity of different apricot geographical groups determined by SSR markers[J]. Genome, 2003, 46 (2):244-269.
[2] MANIFESTO M M, SCHLATTERAR, HOPP H E, et al. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers[J]. Crop Science, 2001, 41(3): 682-690.
[3] PRASAD M, VARSHNEY R K, ROY J K, et al. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat[J]. Theoretical and Applied Genetics, 2000, 100(3-4): 584-592.
[4] WILLIAM M, DOROCICZ I, KASHA K J. Use of microsatellite DNA to distinguish malting and non-malting barley cultivars[J]. Am Soc Brew Chem,1997, 55:107-111.
[5] 郑永胜, 张晗,王东建,等. 基于荧光检测技术的小麦品种SSR鉴定体系的建立[J]. 中国农业科学,2014, 47(19): 3 725-3 735.
[6] 冯博,许理文,王凤格,等. 玉米品种京科968纯度鉴定引物的确定[J]. 分子植物育种, 2017, 15 (11): 4 688-4 694.
[7] 刘文彬, 许理文,王凤格,等. 基于两种荧光毛细管电泳平台筛选评估玉米新型SSR引物[J]. 玉米科学, 2017, 25 (2): 24-30.
[8] KO W R, SA K J,ROY N S, et al. Analysis of the genetic diversity of super sweet corn inbred lines using SSR and SSAP markers [J]. Genetics and Molecular Research, 2016, 15 (1): 1-13.
[9] 朱勇良, 谢裕林,黄凌哲,等. 太湖稻区及国内部分香稻SSR指纹图谱构建及遗传多样性初析[J]. 植物遗传资源学报,2012, 13(4): 666-671.
[10] 王欣怡, 李雪源,龚照龙,等. 基于SSR标记新疆陆地棉的DNA指纹图谱构建及遗传多样性分析[J]. 棉花学报, 2018, 30 (4): 308-315.
[11] 任小平, 郑艳丽,黄莉,等. 花生SSR核心引物筛选及育成品种DNA指纹图谱构建[J]. 中国油料作物学报, 2016, 38 (5): 563-571.
[12] 李益, 马先锋,唐浩,等. 柑橘品种鉴定的SSR标记开发和指纹图谱库构建[J]. 中国农业科学, 2018, 51 (15): 2 969-2 979.
[13] 谷方红, 李海峰,张五九,等.采用微卫星技术进行大麦及麦芽的品种鉴定[J]. 啤酒科技, 2005 (11): 26-29.
[14] 程本义, 夏俊辉,龚俊义,等. SSR荧光标记毛细管电泳检测法在水稻DNA指纹鉴定中的应用[J]. 中国水稻科学, 2011, 25 (6): 672-676.
[15] 张志军, 黄克兴,岳杰,等. TP-M13-SSR技术在麦芽品种鉴定中的应用[J]. 食品科学, 2018, 39 (24): 183-188.
[16] 夏春兰, 方清建,付存念,等. 玉米简易多重SSR-PCR和荧光标记检测技[J]. 分子植物育种, 2015, 13 (9): 2 095-2 099.
[17] 张嘉, 刘爱青,张淑玲,等. 利用荧光标记SSR绘制中国芍药品种分子身份证[J]. 北京林业大学学报, 2016, 38 (6): 101-109.
[18] HAYDEN M J, NGUYEN T M, WATERMAN A, et al. Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat [J]. Mol Breeding, 2008, 21 (3): 271-281.
[19] 吴则东, 王茂芊,马龙彪,等. 甜菜多重SSR-PCR体系的建立和优化[J]. 中国农学通报, 2014, 30 (9): 160-164.
[20] MIGLIARO, DMORREALE, GGARDIMAN M, et al. Direct multiplex PCR for grapevine genotyping and varietal identification [J]. Plant Genetic Resources, 2013, 11 (2): 182-185.
[21] REYES J, DELOS, PANES, et al. Multiplex SSR-PCR analysis of genetic diversity and redundancy in the philippine rice (Oryza sativa L.) germplasm collection [J]. Crop Science, 2014, 39 (2): 22-43.
[22] 汪国云, 周剑,沈禹彤,等. 应用多重荧光SSR标记组合鉴定杨梅果实的品种来源[J]. 中国南方果树, 2014, 43 (3): 15-18.
[23] 武文艳, 易红梅,王凤格,等. 玉米SSR分子标记的荧光多重PCR体系的构建及优化[J]. 作物杂志, 2012(5): 59-62.
[24] 陈浩东, 刘方,王为,等. 棉花多重PCR技术及其对杂交棉纯度鉴定的初步研究[J]. 棉花学报, 2011, 23(1): 22-27.
[25] 张志军, 岳杰,尹花,等. 麦芽品种DNA指纹图谱构建的研究[J].食品工业科技, 2018, 39 (6): 92-96.
[26] 冯飞, 汪磊,傅春玲,等. 基于SSR标记的向日葵DNA指纹图谱构建[J]. 中国油料作物学报, 2018, 40 (4): 508-515.
[27] 董志刚, 李晓梅,谭伟,等. 基于SSR标记的葡萄品种鉴别和指纹图谱构建[J]. 分子植物育种, 2018, 16 (11): 3 605-3 614.
[28] 包文泉, 乌云塔娜,赵罕,等. 基于SSR标记的仁用杏主栽品种鉴别和指纹图谱构建[J]. 西北农林科技大学学报(自然科学版), 2017, 45 (6): 163-169.
[29] DANIEL J, PERRY, URSLA FERNANDO, et al. Simple sequence repeat-based identification of Canadian malting barley varietie [J]. Canadian Journal of Plant Science, 2014, 94 (3): 485-496.
[30] 刘丽华, 庞斌双,刘阳娜,等. 基于SNP标记的小麦高通量身份鉴定模式[J]. 麦类作物学报, 2018, 38 (5): 529-534.
Outlines

/