In order to investigate the effects of water activity and storage temperature on moisture content, and to explore the thermodynamic characteristics of net adsorption heat, enthalpy, entropy and free energy of dried ‘Chuliang’ longan. The static weighing method was used to determine equilibrium moisture content of dried ‘Chuliang’ longan at 20, 30, and 40 ℃ with a range of water activities from 0.113 to 0.946. The adsorption isotherms were plotted and the experimental results were fitted by 6 commonly-used agricultural products adsorption models. The results showed that the moisture adsorption isotherm of dried ‘Chuliang’ longan was type III and the Halsey model was most suitable for describing adsorption isotherm. In addition, the net adsorption heat decreased with the increase of moisture content and approached to zero as equilibrium moisture content was higher than 30%d.b. (dry basis). The net adsorption heat was equal to the enthalpy changes, which ranged from 0.2 kJ/mol to 467.69 kJ/mol. Changes of entropy values decreased with the increase of moisture content, while temperature showed no significant effect. The water adsorption process of dried ‘Chuliang’ longan could be explained by enthalpy-entropy complementarity theory, which was driven by enthalpy. The results provide a reference for the processing, packaging and safe storage of ‘Chuliang’ longan.
[1] 黄美香,林河通,李辉,等. 龙眼果实加工技术研究进展[J]. 包装与食品机械, 2012, 30(2): 48-52.
[2] 林育钊,林毅雄,林河通,等. 龙眼果实品质劣变和贮藏保鲜技术研究进展[J]. 包装与食品机械, 2016, 34(6): 46-50.
[3] MARTÍNEZ-LAS HERAS R, HEREDIA A, CASTELLO M L, et al. Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves[J]. Food Bioscience, 2014, 7: 88-94.
[4] BEJAR A K, MIHOUBI N B, KECHAOU N.Moisture sorption isotherms-Experimental and mathematical investigations of orange (Citrus sinensis) peel and leaves[J]. Food Chemistry, 2012, 132(4): 1 728-1 735.
[5] AGHA M K K, LEE W S, BUCKLIN R A, et al. Sorption isotherms for triticale seed[J]. Transactions of the ASABE, 2014, 57(3): 901-904.
[6] FREITAS M L F, POLACHINI T C, DE SOUZA A C, et al. Sorption isotherms and thermodynamic properties of grated Parmesan cheese[J]. International Journal of Food Science & Technology, 2016, 51(1): 250-259.
[7] 朱文学. 食品干燥原理与技术[M]. 北京: 科学出版社, 2009: 38-69.
[8] 李辉,林河通,林毅雄,等. 干制荔枝果肉吸附等温线及热力学性质[J]. 农业工程学报, 2014, 30(22): 309-315.
[9] 邱光应,彭桂兰,吴绍锋,等. 花椒吸附等温线及热力学性质[J]. 食品科学, 2015, 36(21): 1-5.
[10] TAITANO L Z, SINGH R P, LEE J H, et al.Thermodynamic analysis of moisture adsorption isotherms of raw and blanched almonds[J]. Journal of Food Process Engineering, 2012, 35(6): 840-850.
[11] 杨昭,李想,陶志超. 豌豆种子吸附等温线与热力学性质研究[J]. 农业机械学报, 2017, 48(10): 323-329.
[12] TO$\check{G}$RUL H, ARSLAN N. Moisture sorption isotherms and thermodynamic properties of walnut kernels[J]. Journal of Stored Products Research, 2007, 43(3): 252-264.
[13] 张绪坤,王高敏,姚斌,等. 单粒莲子热风干燥特性及其干燥动力学[J]. 现代食品科技, 2017, 33(4): 141-148.
[14] 李兴军,王双林,张元娣,等. 玉米吸湿特性及其等温线类型研究[J]. 中国粮油学报, 2012, 27(1): 80-86.
[15] SAMAPUNDO S, DEVLIEGHERE F, DE MEULENAER B, et al.Sorption isotherms and isosteric heats of sorption of whole yellow dent corn[J]. Journal of Food Engineering, 2007, 79(1): 168-175.
[16] 刘成梅,周国辉,万婕,等. 大米淀粉解吸等温线与吸附等温线的拟合模型研究[J]. 食品工业科技, 2014, 35(10): 198-201.
[17] 王明洁,吴小丽,袁建,等. 小麦粉水分的吸附与解吸特性[J]. 食品科学, 2012, 33(19): 45-51.
[18] 陈羽白,邵耀坚,刘道被,等. 龙眼平衡含水率及其模型的研究[J]. 华南农业大学学报, 1996, 17(4): 107-111.
[19] JANJAI S, INTAWEE P, TOHSING K, et al.Neural network modeling of sorption isotherms of longan (Dimocarpus longan Lour.)[J]. Computers and Electronics in Agriculture, 2009, 66(2): 209-214.
[20] 食品安全国家标准食品中水分的测定[S]. 北京, 国家卫生和计划生育委员会, 2017.
[21] 赵亚,张平平,石启龙. 花生壳/仁的吸附等温线与热力学特性[J]. 食品科学, 2017, 38(7): 55-62.
[22] DALGIÇ A C, PEKMEZ H, BELIBA LI K B. Effect of drying methods on the moisture sorption isotherms and thermodynamic properties of mint leaves[J]. Journal of Food Science and Technology, 2012, 49(4): 439-449.
[23] OSWIN C R.The kinetics of package life. III. The isotherm[J]. Journal of the Society of Chemical Industry, 1946, 65(12): 419-421.
[24] HALSEY G.Physical adsorption on non-uniform surfaces[J]. The Journal of Chemical Physics, 1948, 16(10): 931-937.
[25] XING C, LIU X, JIN Q, et al.Moisture sorption thermodynamics of camellia oleifera[J]. Food Biophysics, 2012, 7(2): 163-172.
[26] MCMINN W, AL-MUHTASEB A H, MAGEE T. Enthalpy-entropy compensation in sorption phenomena of starch materials[J]. Food Research International, 2005, 38(5): 505-510.
[27] BERISTAIN C I, GARCIA H S, AZUARA E.Enthalpy-entropy compensation in food vapor adsorption[J]. Journal of Food Engineering, 1996, 30(3-4): 405-415.
[28] KRUG R R, HUNTER W G, GRIEGER R A.Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data[J]. The Journal of Physical Chemistry, 1976, 80(21): 2 335-2 341.
[29] SING W K S, EVERETT H D, HAUL W R A, et al. Reporting physisorption data for gas solid systems with special references to the determination of surface-area and porosity[J]. Pure Appl Chem, 1985, 57(4): 603-619.
[30] 张志健. 食品防腐保鲜技术[M]. 北京: 科学技术文献出版社, 2006: 40-41.
[31] TAITANO L Z, SINGH R P, LEE J H, et al.Thermodynamic analysis of moisture adsorption isotherms of raw and blanched almonds[J]. Journal of Food Process Engineering, 2012, 35(6): 840-850.
[32] 金兹布尔格 A. C. 食品干燥原理与技术基础[M]. 北京: 轻工业出版社, 1986.