Overview and special review

Mechanisms of specific substrate hydrolysis of proteases: a review

  • XIONG Ke ,
  • DENG Lei ,
  • LIU Jiayun ,
  • PEI Penggang
Expand
  • 1(Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China)
    2(Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China)
    3(Beijing Key Laboratory of Flavor Chemistry,Beijing Technology and Business University, Beijing 100048, China)
    4(Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China)

Revised date: 2019-07-01

  Online published: 2019-11-15

Abstract

The specificity of enzyme hydrolysis site of proteases has a great influence on the composition and ratio, as well as the value of the products. Enzymatic hydrolysis of proteins has the disadvantages of limited efficiency, low yield of functional specific components and high purification cost, which limit the large-scale industrial application. In order to solve the problems, it is necessary to elucidate the molecular mechanisms of how proteases can specifically hydrolyze substrates. This review was therefore conducted to discuss the mechanisms from several aspects, including the properties of substrate groups, the characteristics and spatial position of amino acids at binding sites, as well as the surface charge of enzyme molecules etc. It was found that the basic catalytic mechanism of proteases could not explain the differences in substrate specificity. At present, several researches on the mechanisms of protease specificity provided guiding significance, but a comprehensive and unified mechanism has not yet been formed, which needs further research and improvement.

Cite this article

XIONG Ke , DENG Lei , LIU Jiayun , PEI Penggang . Mechanisms of specific substrate hydrolysis of proteases: a review[J]. Food and Fermentation Industries, 2019 , 45(19) : 292 -298 . DOI: 10.13995/j.cnki.11-1802/ts.021238

References

[1] 巩晓芳,张宗舟,薛林贵.蛋白酶的研究进展[J].中国食品工业,2011(10):50-52.
[2] DOS SANTOS AGUILAR J G, SATO H H. Microbial proteases: Production and application in obtaining protein hydrolysates[J]. Food Research International, 2018, 103:253-262.
[3] 田宝玉, 赖丽蓉,蔡婉玲,等. 蛋白酶底物特异性改变对白鲢鱼肉蛋白酶解效率和产物抗氧化性的影响[J]. 福建农林大学学报(自然科学版), 2013,42(3):323-327.
[4] 刘超. 谷胱甘肽的发酵生产及其分离纯化[D].济南:济南大学,2012.
[5] 陈新,陈庆森,庞广昌. 酶解玉米蛋白生产生物活性多肽的研究现状及开发趋势[J]. 食品科学, 2004,25(7):202-205.
[6] 于亚莉,宋雪梅,王莹,等.玉米胚芽粕清蛋白酶解产物的制备及其抗氧化活性和护肝作用[J].中国食品学报,2018,18(6):93-103.
[7] 左蕾蕾,焦婷,邹丽霞,等.沙棘叶多肽制备工艺研究[J].食品与发酵科技,2019,55(1):30-34.
[8] 孙健. 牛乳蛋白ACEIP酶解工艺及发酵乳产品研究[D].扬州:扬州大学,2006.
[9] CHENG Qipeng, XU Fangyan, HU Nan, et al.A novel Ca2+-dependent alkaline serine-protease (Bvsp) from Bacillus sp. with high fibrinolytic activity[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 117:69-74.
[10] PAN Saikun, WANG Shujun, JING Lingling, et al.Purification and characterisation of a novel angiotensin-I converting enzyme (ACE)-inhibitory peptide derived from the enzymatic hydrolysate of Enteromorpha clathrata protein[J]. Food Chemistry, 2016, 211:423-430.
[11] 陈丹阳,韩涛,杜斌,等.酶解蚕豆蛋白制备降胆固醇肽及其响应面优化[J].中国油脂,2018,43(10):46-52.
[12] KERPES R, FISCHER S, BECKER T.The production of gluten-free beer: Degradation of hordeins during malting and brewing and the application of modern process technology focusing on endogenous malt peptidases[J]. Trends in Food Science & Technology, 2017, 67:129-138.
[13] 姜光域,李玲,闫志勇,等.嗜麦芽寡养单胞菌D2外泌蛋白酶抗肿瘤活性初步探讨[J].青岛大学医学院学报,2011,47(1):5-7.
[14] EATEMADI A, AIYELABEGAN H T, NEGAHDARI B, et al.Role of protease and protease inhibitors in cancer pathogenesis and treatment[J]. Retour Au Numéro, 2017, 86(Complete):221-231.
[15] SHETTY R, VESTERGAARD M, JESSEN F, et al.Discovery, cloning and characterisation of proline specific prolyl endopeptidase, a gluten degrading thermo-stable enzyme from Sphaerobacter thermophiles[J]. Enzyme and Microbial Technology, 2017, 107:57-63.
[16] 罗湛宏. 鸡蛋全粉酶解工艺的优化研究[J].农产品加工,2019(1):37-39.
[17] 高建萍,姚之龙,张贵锋.燕窝低聚肽制备工艺及生物学评价[J].生物学杂志,2019(1):96-99.
[18] 程妍. 骨胶原蛋白酶解工艺及骨营养粉对大鼠补钙功效的研究[D].兰州:甘肃农业大学,2009.
[19] 宋焕禄,廖国洪.动物蛋白酶解研究(I)[J].食品科学,2001,22(5):21-26.
[20] HSIAO N W, CHEN Y, KUAN Y C, et al.Purification and characterization of an aspartic protease from the Rhizopus oryzae protease extract, Peptidase R[J]. Electronic Journal of Biotechnology, 2014, 17(2):89-94.
[21] 王镜岩,朱圣庚,徐长法.生物化学[M].第三版.北京:高等教育出版社, 2002: 389-392.
[22] DE CASTRO R J S, SATO H H. Synergistic actions of proteolytic enzymes for production of soy protein hydrolysates with antioxidant activities: An approach based on enzymes specificities[J]. Biocatalysis and Agricultural Biotechnology, 2015,4(4):694-702.
[23] 曹健,师俊玲.食品酶学[M].郑州:郑州大学出版社,2011:206-207.
[24] ZHU Y S, KALYANKAR P, FITZGERALD R J.Quantitative analysis of bovine β-casein hydrolysates obtained using glutamyl endopeptidase[J]. LWT-Food Science and Technology, 2015, 63(2):1 334-1 338.
[25] ZHU Y S, KALYANKAR P, FITZGERALD R J.Relative quantitation analysis of the substrate specificity of glutamyl endopeptidase with bovine α-caseins[J]. Food Chemistry, 2015, 167:463-467.
[26] KALYANKAR P, ZHU YISHEN, O KEEFFE M, et al. Substrate specificity of glutamyl endopeptidase (GE): Hydrolysis studies with a bovine α-casein preparation[J]. Food Chemistry, 2013, 136(2):501-512.
[27] AHN J, CAO MINIIE, YU YINGQING, et al. Accessing the reproducibility and specificity of pepsin and other aspartic proteases[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2013, 1 834(6):1 222-1 229.
[28] 廉德君. 位点专一性蛋白酶——基因工程的新工具[J]. 生命的化学(中国生物化学会通讯), 1997(5):36-38.
[29] 杨凌燕,刘莹,周慧,等.利用噬菌体肽库筛选胰凝乳蛋白酶的底物[J].中国生物化学与分子生物学报,2000,16(2):240-243.
[30] LOPES A R, JULIANO M A, MARANA S R, et al.Substrate specificity of insect trypsins and the role of their subsites in catalysis[J]. Insect Biochemistry and Molecular Biology, 2006, 36(2):130-140.
[31] SCHULZ K, GIESLER L, LINKE D, et al.A prolyl endopeptidase from Flammulina velutipes for the possible degradation of celiac disease provoking toxic peptides in cereal proteins[J]. Process Biochemistry, 2018,73:47-55.
[32] ASZTALOS P, MÜLLER A, HÖLKE W, et al. Atomic resolution structure of a lysine-specific endoproteinase from Lysobacter enzyme genes suggests a hydroxyl group bound to the oxyanion hole[J]. Acta Crystallographica Section D Biological Crystallography, 2014,70(7):1 832-1 843.
[33] 方真. Stenotrophomonas maltophilia角蛋白酶的分子改造[D].无锡:江南大学,2017.
[34] 邹汉法, 王春丽,叶明亮. 基于固载的混合蛋白质为筛选库的蛋白酶底物筛选方法:201310374698.9[P].2015-03-18.
[35] 文华, 张庭芳,张龙翔. 表面电荷突变与胰蛋白酶底物专一性的改造[J]. 生物化学杂志, 1997,13(6):40-45.
[36] 李燕燕, 王立,钱海峰,等. 酰化大米蛋白理化性质及胰蛋白酶酶解性质研究[J]. 现代食品科技, 2015,31(2):81-86.
[37] GORFE A, BRANDSDAL B H, HELLAND R, et al.Electrostatics of mesophilic and psychrophilic trypsin isoenzymes: qualitative evaluation of electrostatic differences at the substrate binding site[J]. Proteins-structure Function & Bioinformatics, 2015,40(2):207-217.
[38] 张爽. 乳酸菌发酵特性及其蛋白酶对凝乳品质影响研究[D].哈尔滨:哈尔滨工业大学,2015.
[39] 王静. 蛋白酶和淀粉酶在洗衣液中的应用[D].广州:华南理工大学,2018.
[40] 侯晓双,丁娅,杨功俊.基质金属蛋白酶在癌症治疗中的应用进展[J].广东化工,2018,45(9):126-127.
[41] 王雄,陈清华.饲用蛋白酶及其在肉鸡日粮中应用的研究进展[J].饲料研究,2016(21):10-14.
[42] 张灿. 银杏活性多肽的制备及功能性多肽产品研究[D].南京:南京林业大学,2017.
[43] 蒋少龙, 蔡俊. 角蛋白酶及其应用研究进展[J]. 食品工业科技, 2019,40(6):348-354.
[44] 姜恬, 冯旭东,李岩,等. 底物特异性的生物催化与酶设计改造[J]. 化工进展, 2019,38(1):606-614.
[45] 来鲁华,王彦力,徐筱杰,等.高专一性胰蛋白酶突变体的分子设计[J].中国科学(B辑化学生命科学地学),1993(9):919-922.
[46] 雷攀先. 地衣芽孢杆菌GXT-1两个碱性蛋白酶基因的克隆表达、酶学性质研究及分子改造[D].南宁:广西大学,2013.
[47] 程可利, 刘晓,李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017,37(4):56-67.
Outlines

/