[1] EL ASHRY E, ALY M. Synthesis and biological relevance of N-acetylglucosamine-containing oligosaccharides[J]. Pure and Applied Chemistry, 2007, 79(12):2 229-2 242.
[2] YADAV V, PANILAITIS B, SHI H, et al. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus[J]. PLoS One, 2011, 6(6):e18 099.
[3] CHEN J K, SHEN C R, YEH C H, et al. N-acetyl glucosamine obtained from chitin by chitin degrading factors in Chitinbacter tainanesis[J]. International Journal of Molecular Sciences, 2011, 12(2):1 187-1 195.
[4] HULIKOVA K, SVOBODA J, BENSON V, et al. N-acetyl-D-glucosamine-coated polyamidoamine dendrimer promotes tumor-specific B cell responses via natural killer cell activation[J]. International Immunopharmacology, 2011, 11(8):955-961.
[5] DENG M D, SEVERSON D K, GRUND A D, et al. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine[J]. Metabolic Engineering, 2005, 7(3):201-214.
[6] LIU L, LIU Y, SHIN H D, et al. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology[J]. Applied Microbiology and Biotechnology, 2013, 97(14):6 113-6 127.
[7] LIU Y, ZHU Y, LI J, et al. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production[J]. Metabolic Engineering, 2014, 23:42-52.
[8] WANG Y Y, XU J Z, ZHANG W G. Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review[J]. Critical Reviews in Biotechnology, 2019, 39(5):633-647.
[9] JIN P, KANG Z, YUAN P, et al. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168[J]. Metabolic Engineering, 2016, 35:21-30.
[10] WESTBROOK AW, REN X, OH J, et al. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis[J]. Metabolic Engineering, 2018, 47:401-413.
[11] LIU L, LIU Y, SHIN H D, et al. Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives[J]. Applied Microbiology and Biotechnology, 2013, 97(14):6 149-6 158.
[12] DENG M D, ANGERER J D, CYRON D, et al. Process and material for production of glucosamine and N-acetylglucosamine: US8124381[P]. 2012-2-28.
[13] 陈鑫. 代谢工程改造大肠杆菌发酵生产氨基葡萄糖及过程优化与控制[D]. 无锡: 江南大学, 2012.
[14] 丁振中, 冯小海, 张超, 等. 产氨基葡萄糖工程菌的构建与发酵培养基优化[J]. 化工管理, 2018(3):73-75.
[15] LIU Y, LIU L, SHIN H D, et al. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine[J]. Metabolic Engineering, 2013, 19:107-115.
[16] COLLINS J A, IRNOV I, BAKER S, et al. Mechanism of mRNA destabilization by the glmS ribozyme[J]. Genes & Development, 2007, 21(24):3 356-3 368.
[17] WINKLER W C, NAHVI A, ROTH A, et al. Control of gene expression by a natural metabolite-responsive ribozyme[J]. Nature, 2004, 428(6 980):281-286.
[18] 王雅婷. 生物法合成N-乙酰氨基葡萄糖[D]. 北京: 北京化工大学, 2016.
[19] TANNLER S, DECASPER S, SAUER U. Maintenance metabolism and carbon fluxes in Bacillus species[J]. Microbiology Cell Factories, 2008, 7:19.
[20] PERKINS J, WYSS M, SAUER U, et al. Metabolic Pathway Engineering Handbook[M]. New York: CRC Press, 2009.
[21] LIU Y, ZHU Y, MA W, et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis[J]. Metabolic Engineering, 2014, 24:61-69.
[22] MA W, LIU Y, SHIN H D, et al. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetylglucosamine production[J]. Bioresource Technology, 2018, 250:642-649.
[23] LO T M, TEO W S, LING H, et al. Microbial engineering strategies to improve cell viability for biochemical production[J]. Biotechnology Advances, 2013, 31(6):903-914.
[24] NIU T, LIU Y, LI J, et al. Engineering a glucosamine-6-phosphate responsive glmS ribozyme switch enables dynamic control of metabolic flux in Bacillus subtilis for overproduction of N-acetylglucosamine[J]. ACS Synthetic Biology, 2018, 7(10):2 423-2 435.
[25] WU Y, CHEN T, LIU Y, et al. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis[J]. Metabolic Engineering, 2018, 49:232-241.
[26] SEGALL-SHAPIRO T H, SONTAG E D, VOIGT C A. Engineered promoters enable constant gene expression at any copy number in bacteria[J]. Nature Biotechnology, 2018, 36(4):352-358.
[27] GUPTA A, REIZMAN IM, REISCH C R, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nature Biotechnology, 2017, 35(3):273-279.
[28] YANG J, SEO S W, JANG S, et al. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes[J]. Nature Communications, 2013, 4:1 413.
[29] CAROTHERS J M, GOLER J A, JUMINAGA D, et al. Model-driven engineering of RNA devices to quantitatively program gene expression[J]. Science, 2011, 334(6 063):1 716-1 719.
[30] DAHL R H. Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31:1 039-1 046.
[31] WEISSMANN B, MEYER K. The Structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord[J]. Journal of the American Chemical Society, 1954, 76:1 753-1 757
[32] KOGAN G, SOLTES L, STERN R, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnology Letters, 2007, 29(1):17-25.
[33] WIDNER B, BEHR R, VON DOLLEN S, et al. Hyaluronic acid production in Bacillus subtilis[J]. Applied and Environmental Microbiology, 2005, 71(7):3 747-3 752.
[34] IZAWA N, SERATA M, SONE T, et al. Hyaluronic acid production by recombinant Streptococcus thermophilus[J]. Journal of Bioscience and Bioengineering, 2011, 111(6):665-670.
[35] JIA Y, ZHU J, CHEN X, et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights[J]. Bioresource Technology, 2013, 132:427-431.
[36] JEONG E, SHIM W Y, KIM J H. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight[J]. Journal of Biotechnology, 2014, 185:28-36.
[37] CHENG F, GONG Q, YU H, et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum[J]. Biotechnology Journal, 2016, 11(4):574-584.
[38] CHENG F, LUOZHONG S, GUO Z, et al. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation[J]. Biotechnology Journal, 2017, 12(10).DOI:10.1002/biot.201700191.
[39] CHENG F, YU H, STEPHANOPOULOS G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid[J]. Metabolic Engineering, 2019.DOI:10.1016/j.ymben.2019.08.011.
[40] VARKI A. Diversity in the sialic acids[J]. Glycobiology, 1992, 2(1):25-40.
[41] WANG B. Sialic acid is an essential nutrient for brain development and cognition[J]. Annual Review of Nutrition, 2009, 29:177-222.
[42] BONDIOLI L, RUOZI B, BELLETTI D, et al. Sialic acid as a potential approach for the protection and targeting of nanocarriers[J]. Expert Opinion on Drug Delivery, 2011, 8(7):921-937.
[43] ISHIKAWA M, KOIZUMI S. Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli[J]. Carbohydrate Research, 2010, 345(18):2 605-2 609.
[44] KANG J, GU P, WANG Y, et al. Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli[J]. Metabolic Engineering, 2012, 14(6):623-629.
[45] YAN Q, FONG S S. Design and modularized optimization of one-step production of N-acetylneuraminic acid from chitin in Serratia marcescens[J]. Biotechnology and Bioengineering, 2018, 115(9):2 255-2 267.
[46] ZHANG X, LIU Y, LIU L, et al. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis[J]. Biotechnology and Bioengineering, 2018, 115(9):2 217-2 231.