To establish a rapid and accurate authenticity identification technology, simple sequence repeats (SSR) fluorescent labeling technology was applied in constructing the fingerprint database of hop varieties. In TP-M13-SSR , M13 tail sequence was used as a universal adaptor to the SSR forward primer, only the M13 universal primer was fluorescently labeled, and the amplification products of different primers were detected by capillary electrophoresis. Four pairs of primers with the best polymorphism and combination of primers were screened from 103 candidates. A total of 28 alleles were detected in 18 hop varieties, and each pair of primers produced 3-11 allele fragments with an average of 7.0. The authenticity identification of 18 domestic and international hop varieties could be achieved by the 4 pairs of primers. The method is fast and accurate, which can provide a technical support for hop cultivation, processing and procurement, as well as protection of new varieties.
[1] DE KEUKELEIRE D. Fundamentals of beer and hop chemistry[J]. Quim Nova, 2000, 23(1):108-112.
[2] OLAVIDE O SUE J, TREVOR C, et al. Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma [J]. Food Chemistry, 2017(230):215-224.
[3] LIU Z C, WANG L P, LIU Y M. Rapid differentiation of Chinese hop varieties (Humulus lupulus) using volatile fingerprinting by HS-SPME-GC-MS combined with multivariate statistical analysis [J]. Food Science & Technology, 2018(98): 3 758-3 766.
[4] PAULIUS K, ZYDRU-MAS S, VILMA K, et al. Clustering analysis of different hop varieties according to their essential oil composition measured by GC/MS [J]. Chemical Papers, 2016,70(12): 1 568-1 577.
[5] KAREL S, PAVEL C, JIRI C, et al. Determination of linalool in different hop varieties using a new method based on fluidized-bed extraction with gas chromatographic-mass spectrometric detection [J]. American Society of Brewing Chemists, 2015, 73(2): 151-158.
[6] 郭沙沙,王志沛,骆学雷,等. 非线性化学指纹图谱在啤酒花鉴别评价中的应用[J]. 酿酒科技, 2013(9): 71-74.
[7] ABERT, A COELHAN, MEHMET. Determination of volatile compounds in different hop varieties by headspace-trap GC/MS-In comparison with conventional hop essential oil analysis[J]. American Society of Brewing Chemists, 2015, 1(1):32-37.
[8] MIKYSKA A, KROFTA K. Assessment of changes in hop resins and polyphenols during long-term storage[J]. Journal of the Institute of Brewing, 2012, 118(3):269-279.
[9] 林艳,管华诗,樊伟,等. RAPD和STS分子标记技术鉴定酒花品种和纯度[J]. 食品与发酵工业, 2006, 32(2): 86-89.
[10] MURAKAMI A. Hop Variety classification using the genetic distance based on RAPD [J]. Journal of the Institute of Brewing, 2000,106 (3):157-162.
[11] 谷方红,李海峰,张五九,等. 酒花品种的DNA指纹鉴定技术[J]. 食品与发酵工业, 2003, 29(6):23-26.
[12] HIROMASA Y,YURI M,TAKAYUKI T, et al. Newly developed SNP-based identification method of hop varieties[J]. American Society of Brewing Chemists, 2014, 72(4):239-245.
[13] WUNSCH A, HORMAZA J I. Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers[J]. Euphytica, 2002, 125(1):59-67.
[14] CERENAK, A. JAKSE, J. JAVORMIK, B. Identification and differentiation of hop varieties using simple sequence repeat markers[J]. American Society of Brewing Chemists, 2003, 62(1):1-7.
[15] 张志军,岳杰,尹花,等. 麦芽品种DNA指纹图谱构建的研究[J].食品工业科技, 2018, 39(6): 92-96.
[16] AMANI B, RAMZI C, MOULDI E,et al. Genetic diversity analysis of North Africas barley using SSR markers[J]. Genetic Engineering and Biotechnology, 2012,10(1): 13-21.
[17] DANIEL J, PERRY, URSLA FERNANDO, et al. Simple sequence repeat-based identification of Canadian malting barley varieties[J]. Canadian Journal of Plant Science, 2014, 94 (3): 485-496.
[18] 李莉莉,王俊峰,颜廷进,等.基于SSR标记的山东省小麦DNA指纹图谱的构建[J]. 植物遗传资源学报, 2013, 14(3): 537-541.
[19] PRASAD M, VARSHNEY R K, ROY J K, et al. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat[J]. Theoretical and Applied Genetics, 2000, 100(3-4): 584-592.
[20] PATZAK J, MATOUSˇEK J. Development and evaluation of expressed sequence tag-derived microsatellite markers for hop genotyping [J]. Biologia Plantarum, 2011, 55 (4): 761-765.
[21] HORREO J, PEREDO, OLMEDO. Genetic diversity inferred from microsatellites of wild hops in galicia (Spain)[J]. Brewing Science, 2014, 67: 132-136.
[22] 张志军,黄克兴,岳杰,等. TP-M13-SSR技术在麦芽品种鉴定中的应用[J].食品科学, 2018, 39 (24): 183-188.
[23] 高源,王昆,王大汇,等. 利用TP-M13-SSR标记构建苹果栽培品种的分子身份证[J]. 园艺学报, 2016, 43(1):25-37.
[24] LIU Zhizhai, GUO Ronghua, ZHAO Jiuran, et al. Genetic diversity of two important groups of maize landraces with same name in China revealed by M13 Tailed-Primer SSRs[J]. Agricultural Sciences in China, 2009, 8(1): 15-23.
[25] BARKLEY N A, DEAN R E, PITTMAN R N, et al. Genetic diversity of cultivated and wild-type peanuts evaluated with M13-tailed SSR markers and sequencing[J]. Genetics Research, 2007, 89(2): 93-106.
[26] 高源,王昆,刘凤之,等. 适宜加工用苹果品种TP-M13-SSR指纹图谱构建及遗传关系分析[J]. 园艺学报, 2014,41(5): 946-956.
[27] 樊云芳,尹跃,安巍,等. TP-M13 TP-M13-SSR技术在枸杞遗传多样性研究中的应用[J]. 西北农业学报, 2017,26(6): 890-896.
[28] JAKSˇE J, BANDELJ D, JAVORNIK B. Eleven new microsatellites for hops (Humulus lupulus L.)[J]. Molecular Ecology Notes, 2002,2(4):544-546.
[29] HADONOU A, M WALDEN R, DARBY P. Genetic structure and differentiation in hop (Humulus lupulus L.) as inferred from microsatellites[J]. Euphytica, 2008, 161(1-2): 301-311.
[30] MARGHERITA R, ANNALISA S, BENEDETTA C, et al. Identification and genetic structure of wild Italian Humulus lupulus L. and comparison with European and American hop cultivars using nuclear microsatellite markers[J]. Genetic Resources and Crop Evolution, 2018, 65(5): 1 405-1 422.
[31] GRAZYNA K G, URSZULA S, HANNA O P. Cultivar identification in dry hop cones and pellets using microsatellite loci[J]. European Food Research and Technology, 2016, 242(9): 1 599-1 605.