Process optimization and morphological characterization of pomelo nano-cellulose

  • FAN Jiaying ,
  • LI Zeling ,
  • ZHU Xiajian ,
  • TAN Anqun ,
  • YI Xin ,
  • ZHOU Qi ,
  • TAN Xiang ,
  • HUANG Linhua ,
  • WANG Hua
Expand
  • Citrus Research Institute, Southwest University, Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712, China

Received date: 2019-05-21

  Online published: 2019-12-20

Abstract

In order to develop the processing and pomelo peel utilization, and to increase the added value, nano-crystal cellulose (NCC) of pomelo peel was prepared by hydrolysis of sulfuric acid from the mesocarp of Fengdu red heart pomelo. The effects of sulfuric acid concentration, reaction temperature and reaction time on the yield were investigated by single factor experiment. On the basis of this, the response surface method was used to determine the optimal process parameters, and the prepared nano-cellulose structure was analyzed by scanning electron microscopy, infrared spectroscopy and X-ray diffraction. The results showed that the optimal conditions for the preparation of pomelo nano-cellulose were sulfuric acid mass fraction of 62%, reaction temperature of 50°C, reaction time of 78 min, contributing to the highest NCC yield of 63.27%. Scanning electron microscopy indicated that the NCC of the pomelo mesocarp showed a spheroidal structure with particle size between 100 nm and 200 nm, and the size distribution was uniform. The sample was identified by infrared spectroscopy as cellulose 2 structure with the crystallinity index of 53.75%. Compared with the microcrystalline cellulose (MCC), NCC has a more regular structure, a larger specific surface area and a higher crystallinity, which ensures a high application value of pomelo peel.

Cite this article

FAN Jiaying , LI Zeling , ZHU Xiajian , TAN Anqun , YI Xin , ZHOU Qi , TAN Xiang , HUANG Linhua , WANG Hua . Process optimization and morphological characterization of pomelo nano-cellulose[J]. Food and Fermentation Industries, 2019 , 45(20) : 202 -208 . DOI: 10.13995/j.cnki.11-1802/ts.021162

References

[1] BRETT C, WALDRON K. Physiology and Biochemistry of plant cell walls[J]. Topics in Plant Physiology,1990,24(1):98.
[2] PARK Y B, KAFLE K, LEE C M, et al. Does cellulose II exist in native alga cell walls? Cellulose structure of Derbesia cell walls studied with SFG, IR and XRD[J]. Cellulose,2015,22(6):3 531-3 540.
[3] PHANTHONG P, REUBROYCHAROEN P,HAO X, et al. Nanocellulose: Extraction and application[J]. Carbon Resources Conversion,2018,1(1):32-43.
[4] HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews,2014,43(5):1 519-1 542.
[5] 禚晓.纳米纤维素纸基生物传感器设计[D].泰安:山东农业大学,2018.
[6] BOUJEMAOUI A, MONGKHONTREERAT S, MALMSTRM E, et al. Preparation and characterization of functionalized cellulose nanocrystals[J]. Carbohydrate Polymers,2015,115:457-464.
[7] DAS K, RAY D, BANDYOPADHYAY N R, et al. A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations[J]. Cellulose,2009,16(5):783-793.
[8] LU P, HSIEH Y L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network[J]. Carbohydrate Polymers,2010, 82(2):329-336.
[9] ELAZZOUZI-HAFRAOUI S, NISHIYAMA Y, PUTAUX J L, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose[J]. Biomacromolecules,2007,9(1):57-65.
[10] HIASA S H, IWAMOTO S, ENDO T, et al. Isolation of cellulose nanofibrils from mandarin (Citrus unshiu) peel waste[J]. Industrial Crops and Products,2014,62:280-285.
[11] SHARMA K, MAHATO N, CHO M H, et al. Converting citrus wastes into value-added products: Economic and environmently friendly approaches[J]. Nutrition,2017,34:29-46.
[12] KHAN M K, DANGLES O. A comprehensive review on flavanones, the major citrus polyphenols[J]. Journal of Food Composition and Analysis,2014,33(1):85-104.
[13] BICU I, MUSTATA F. Optimization of isolation of cellulose from orange peel using sodium hydroxide and chelating agents[J]. Carbohydrate Polymers,2013,98(1):341-348.
[14] BICU I, MUSTATA F. Cellulose extraction from orange peel using sulfite digestion reagents[J]. Bioresource Technology,2011,102(21):10 013-10 019.
[15] 曾小峰,彭雪娇,谈安群,等.柚皮微晶纤维素的制备及其结构特性研究[J].食品与发酵工业,2016,42(9):98-103.
[16] 曾小峰,白小鸣,盖智星,等.响应面试验优化超声辅助提取柚皮纤维素工艺[J].食品科学,2015,36(14):34-38.
[17] NAZ S, AHMAD N, AKHTAR J, et al. Management of citrus waste by switching in the production of nanocellulose[J]. IET Nanobiotechnology,2016,10(6):395-399.
[18] 唐丽荣,欧文,林雯怡,等.酸水解制备纳米纤维素工艺条件的响应面优化[J].林产化学与工业,2011,31(6):61-65.
[19] 陈珊珊,陶宏江,王亚静,等.葵花籽壳纳米纤维素制备工艺优化及其表征[J].农业工程学报,2015,31(15):302-308.
[20] 赵群.纳米微晶纤维素的制备、改性及其增强复合材料性能的研究[D].上海:东华大学,2014.
[21] 杜海顺,刘超,张苗苗,等.纳米纤维素的制备及产业化[J].化学进展,2018,30(4):448-462.
[22] JIANG F, HSIEH Y L. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers[J]. Carbohydrate Polymers,2015,122:60-68.
[23] 张恒,高洪坤,王哲,等.纳米微晶纤维素的制备与表征[J].首都师范大学学报(自然科学版),2018,39(4):31-35.
[24] 刘羽,邵国强,许炯.竹纤维与其它天然纤维素纤维的红外光谱分析与比较[J].竹子研究汇刊,2010,29(3):42-46.
[25] LIU Xiuyu, JIANG Yan, SONG Xueping, et al. A bio-mechanical process for cellulose nanofiber production – Towards a greener and energy conservation solution[J]. Carbohydrate Polymers,2019,208:191-199.
[26] SZYMAN′SKA-CHARGOT M, CHYLIN′SKA M, PIECZYMEK P M, et al. Tailored nanocellulose structure depending on the origin. Example of apple parenchyma and carrot root celluloses[J]. Carbohydrate Polymers,2019,210:186-195.
[27] SIRO I,PLACKETT D. Microfibrillated cellulose and new nanocomposite materials: A review[J]. Cellulose,2010,17(3):459-494.
[28] ELAZZOUZI-HAFRAOUI S, NISHIYAMA Y, PUTAUX J L, et al. The Shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose[J]. Biomacromolecules,2008,9(1):57-65.
Outlines

/