The immunomodulatory effect of the iron yam peptides (IYPs) on immunocompromised mice and its mechanism of action were studied. In this study, cyclophosphamide (CY) was used to establish immunocompromised mouse model. The iron yam peptides were given orally by gavage and cyclophosphamide was injected subcutaneously every other day. The immunomodulatory effects of iron yam peptides on CY-immunized mice were investigated from the body's immune system. The results showed that IYPs contained abundant hydrophobic and essential amino acids. In the immune organs of mice, the immune organ index of CY-immunized mouse model was significantly decreased and the pathological changes of spleen occurred. The phaseolus vulgaris peptides also could promote the index of immune organs and pathology of spleen. The improvement was significant, which indicated that iron yam peptides could promote the development of immune organs in mice with immunocompromised. In mouse immune cells, LDH and ACPase activities, lymphocyte proliferation was significantly decreased in CY-immunized control group. The iron yam peptides significantly increased LDH, ACPase activity and lymphocyte proliferation. In the mouse immunosuppressive substances, the cytokines (IL-1α, IL-6, IFN-γ) and immunoglobulin (IgG, IgM) levels in the CY-immunized group were significantly lower than the normal group. The iron yam peptides significantly increased IL-1α, IL-6, IFN-γ levels and IgG, IgM levels. The iron yam peptides can exert immunomodulatory effects by activating and protecting immune organs, immune cells and immune active substances, thereby enhancing immune ability.
[1] ZHAO T, YUN F, JING L, et al. Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages [J]. International Journal of Biological Macromolecules, 2014, 65(5):33-40.
[2] TOOPCHAM T, MES J J, WICHERS H J, et al. Immunomodulatory activity of protein hydrolysates derived from Virgibacillus halodenitrificans, SK1-3-7 proteinase[J]. Food Chemistry, 2017, 224:320-328.
[3] NONGONIERMA A B, PAOLELLA S, MRDGIL P, et al. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates[J]. Food Chemistry, 2018, 244:340-348.
[4] VANEGAS S M, MEYDANI M, BARNETT J B, et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults[J]. American Journal of Clinical Nutrition, 2017, 105(3):635-650.
[5] NDIAYE F, VUONG T, DUARTE J, et al. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds[J]. European Journal of Nutrition, 2012, 51(1):29-37.
[6] GAUTHIER S F, POULIOT Y, SAINTSAUVEUR D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins[J]. International Dairy Journal, 2006, 16(11):1 315-1 323.
[7] YANG R Y, ZHANG Z F, PEI X R, et al. Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice[J]. Food Chemistry, 2009, 113(2):464-470.
[8] HORIGUCHI N, HORIGUCHI H, SUZUKI Y. Effect of wheat gluten hydrolysate on the immune system in healthy human subjects[J]. Bioscience Biotechnology & Biochemistry, 2005, 69(12):2 445-2 449.
[9] KIM E K, KIM Y S, HWANG J W, et al. Purification of a novel nitric oxide inhibitory peptide derived from enzymatic hydrolysates of Mytilus coruscus[J]. Fish & Shellfish Immunology, 2013, 34(6):1 416-1 420.
[10] NAGAI T, SUZUKI N, TANOUE Y, et al. Antioxidant and antihypertensive activities of autolysate and enzymatic hydrolysates from yam (Dioscorea opposita Thunb.) ichyoimo tubers[J]. Journal of Food Agriculture & Environment, 2007, 5(3):64-68.
[11] YANG W, WANG Y, LI X, et al. Purification and structural characterization of Chinese yam polysaccharide and its activities[J]. Carbohydrate Polymers, 2015, 117:1 021-1 027.
[12] 叶春苗. 山药多糖提取、分离与纯化工艺研究[J]. 农业科技与装备, 2017, 282(12):30-32.
[13] 姬泓巍, 郭会芹, 张晶,等. 山药多糖提取分离工艺的研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(7):89-92.
[14] 杨蕊, 韩涛, 王富贵, 等. 山药糖蛋白对α-葡萄糖苷酶的体外抑制作用研究[J]. 中国食品学报, 2012, 12(2):30-34.
[15] 李小强. 山药蛋白酶解多肽液及多肽酒制备工艺研究[D].武汉:湖北工业大学,2012:5-10.
[16] 饶铖乐. 怀山药多肽的制备及性质研究[D].武汉:湖北工业大学,2013:6-12.
[17] 朱玉端,李小强,董怀灿, 等. 双酶法酶解制备怀山药多肽的研究[J].食品工业,2012,33(9):80-82.
[18] 徐梦辰,丁轲,吕莹, 等.山药蛋白酶解条件及其响应面法的优化[J].中国粮油学报,2015,30(12):27-32.
[19] 陈文超, 钟森, 黄骏, 等. 鱼王浆对免疫功能低下模型小鼠体重及胸腺的影响[J]. 湖北中医药大学学报, 2011, 13(6):11-12.
[20] 高敏. 不同条件环磷酰胺建立小鼠免疫力低下模型的比较及偏最小二乘法(PLS)数学建模分析[J]. 中国比较医学杂志, 2015, 25(9):62-69.
[21] MAURER N, FENSKE D B, CULLIS P R. Developments in liposomal drug delivery systems[J]. Expert Opinion on Biological Therapy, 2001, 1(6):923-947.
[22] MENG F, XU P, WANG X, et al. Investigation on the immunomodulatory activities of Sarcodon imbricatus extracts in a cyclophosphamide (CTX)-induced immunosuppressanted mouse model[J]. Saudi Pharmaceutical Journal, 2017, 25(4):460-463.
[23] 帅学宏, 胡庭俊, 曾芸, 等. 山豆根多糖对免疫抑制模型小鼠免疫器官指数和自由基相关酶活性的影响[J]. 南京农业大学学报, 2009, 32(2):170-172.
[24] 王燕娟, 曹建平. 脾脏白髓结构特征以及维持其完整性的分子机制[J]. 国际医学寄生虫病杂志, 2011, 38(2):80-84.
[25] 李平乐. 非洲鸵鸟主要免疫器官的解剖组织学观察及生理功能的初步研究[D]. 郑州:河南农业大学, 2009:4-5.
[26] ROGATZKI M J, FERGUSON B S, GOODWIN M L, et al. Lactate is always the end product of glycolysis[J]. Frontiers in Neuroscience, 2015, 9:22.
[27] 张树华. 抑制糖酵解途径对胰腺癌细胞PANC-1生物学特性的影响及其机制的研究[D]. 武汉:华中科技大学, 2009:10-14.
[28] OU B, ABE K, CHEN H B, et al. Acid phosphatase localization in accumulated membranous organelles of optic nerve axons following acute elevation of intraocular pressure[J]. Japanese Journal of Ophthalmology, 1998, 42(5):373.
[29] 魏炜, 张洪渊, 石安静. 育珠蚌酸性磷酸酶活力与免疫反应关系的研究[J]. 水生生物学报, 2001, 25(4):413-415.
[30] 聂健, 王冀邯. 运动对大鼠脾脏T淋巴细胞增殖及T细胞亚群的影响研究[J]. 中国免疫学杂志, 2015(4):477-479.
[31] 张胤晟. 入核型IL-1α propiece分子调控机制研究[D]. 苏州:苏州大学,2016:1-10.
[32] 相慧. 番鸭白细胞介素-6基因的克隆与序列分析[D]. 福州:福建农林大学, 2011:8-12.
[33] 王骏俊. 鸡血清IgG的纯化及其单抗制备与鉴定[D]. 合肥:安徽农业大学, 2010:2-12.
[34] 张婧,章萍萍,祁培培, 等.人IgMμ链恒定区各肽段的基因合成原核表达及免疫原性分析[J].安徽医科大学学报,2013,48(9):995-1 000.
[35] KIEWIET M, FAAS M, VOS P D. Immunomodulatory Protein Hydrolysates and Their Application[J]. Nutrients, 2018, 10(7):904.
[36] AHN C B, CHO Y S, JE J Y. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate[J]. Food Chemistry, 2015, 168:151-156.
[37] HE X Q, CAO W H, PAN G K, et al. Enzymatic hydrolysis optimization of Paphia undulata and lymphocyte proliferation activity of the isolated peptide fractions[J]. Journal of the Science of Food & Agriculture, 2015, 95(7):1 544-1 553.
[38] VO T S, RYU B M, KIM S K. Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima[J]. Journal of Functional Foods, 2013, 5(3):1 336-1 346.