Lactoglobulin is an important component of milk protein, which has a high nutritional value. However, it is susceptible to high temperatures, leading to a decline in dairy product quality. In order to evaluate the effect of different temperatures on lactoglobulin, molecular dynamics simulation was used to simulate and analyze the structural changes of lactoglobulin treated at different temperatures (25, 45, 70, 100 and 120 ℃) for 100 ns. Results showed that lactoglobulin was stable at 25 and 45 ℃; when the temperature increased to 70 ℃, the root mean square deviation, the root mean square fluctuation, the radius of gyration and the hydrophobic area solvent accessible surface area of lactoglobulin were significantly increased. These values reached a maximum level of 0.65, 0.99, 1.65 nm and 45 nm2, respectively, at 120 ℃. At 120 ℃, the number of hydrogen bonds inside lactoglobulin was significantly reduced, and the distance of salt bridge Glu45-Lys70 and Glu89-Lys60 was increased by 8Å and 16Å, respectively. The above results indicate that lactoglobulin begins to denature at temperatures above 70°C and more denaturation occurs with the increasing temperatures. This study demonstrates the influence of five different temperatures on the structure of lactoglobulin at the atomic level. It obtains detailed information on its structural changes, which provides a theoretical reference for selecting a suitable temperature in the production process of dairy products.
[1] 周洁瑾, 张列兵, 梁建芬. 热处理对牛乳蛋白质品质的影响[J]. 食品科技, 2010, 35(6): 74-77.
[2] 唐晓姝, 范大明, 胡博, 等. 微波加热对不同钙源强化牛乳的影响[J]. 食品与发酵工业, 2018, 44(12): 161-165.
[3] 王伟军. 牛乳加热及乳粉热相关工艺对蛋白聚合及凝固特性的影响[D]. 哈尔滨:哈尔滨工业大学, 2013.
[4] SAKKAS L, MOUTAFI A, MOSCHOPOULOU E, et al. Assessment of heat treatment of various types of milk[J]. Food Chemistry, 2014, 159: 293-301.
[5] MAYER H K, RABA B, MEIER J, et al. RP-HPLC analysis of furosine and acid-soluble β-lactoglobulin to assess the heat load of extended shelf life milk samples in Austria[J]. Dairy Science & Technology, 2010, 90(4): 413-428.
[6] WANG Y, WEI D Q, WANG J F. Molecular dynamics studies on T1 lipase: Insight into a double-flap mechanism[J]. Journal of Chemical Information and Modeling, 2010, 50(5): 875-878.
[7] PARVEEN T, KAMRAN M, FATMI M Q. Structural and dynamical thermostability of psychrophilic enzyme at various temperatures: Molecular dynamics simulations of tryptophan synthase[J]. Archives of Biochemistry and Biophysics, 2019, 663: 297-305.
[8] 魏贝贝. 基于分子动力学分析的Mn-SOD的热稳定性研究[D]. 曲阜:曲阜师范大学, 2018.
[9] 俞宏达. DHPM处理对β-乳球蛋白与油酸复合物的形成机制、致敏性和功能性质的影响[D]. 南昌:南昌大学, 2016.
[10] 吕建平, 魏冬青, 王永华, 等. 基于分子动力学的脂肪酶Lipase 5的热稳定性研究[J]. 原子与分子物理学报, 2016, 33(1): 128-134.
[11] LINDAHL E, HESS B, SPOEL D V D. GROMACS 3.0: a package for molecular simulation and trajectory analysis[J]. Journal of Molecular Modeling, 2001, 7(8): 306-317.
[12] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
[13] NHAN C, COLIN J R, BEE K M, et al. Temperature-induced structural changes of apo-lactoferrin and their functional implications: a molecular dynamics simulation study[J]. Molecular Simulation, 2019, 45(7): 533-548.
[14] 李达鸿, 李璐, 解新安, 等. OSA变性淀粉的乳化特性及其对纳米乳液构建影响的研究[J]. 食品工业科技, 2017, 38(1): 59-64.
[15] 李阳. β-乳球蛋白与阿拉伯胶相互作用及其复合物对EGCG包载作用研究[D]. 杭州:浙江工商大学, 2019.
[16] SAKURAI K, GOTO Y. Dynamics and mechanism of the Tanford transition of bovine beta-lactoglobulin studied using heteronuclear NMR spectroscopy[J]. Journal of Molecular Biology, 2005, 356(2): 483-496.
[17] PUTRI A M, SUMARYADA T, WAHYUDI S T. Conformation analysis of T1 lipase on alcohols solvent using molecular dynamics simulation[J]. Journal of Physics: Conference Series, 2017, 877(1): 012007.
[18] 付静, 赵立岭, 王吉华. 基于分子动力学模拟研究温度致Aβ42蛋白构象变化[J]. 生物医学, 2013, 3(1): 1-6.
[19] 傅毅, 吴小俊. Barnase早期热变性位点的动力学模拟研究[J]. 计算机与应用化学, 2013, 30(11): 1 305-1 309.
[20] 冯涛, 王珂, 周进杰, 等. 三聚体纳米颗粒自组装过程的分子动力学模拟[J]. 农业工程学报, 2017, 33(3): 300-306.
[21] 董晓燕, 都文婕, 刘夫锋. 多肽抑制剂抑制淀粉质多肽42构象转换的分子动力学模拟和结合自由能计算[J]. 物理化学学报, 2012, 28(11): 2 735-2 744.
[22] MCSWINEY M, SINGH H, CAMPANELLA O H. Thermal aggregation and gelation of bovine β-lactoglobulin[J]. Food Hydrocolloids, 1994, 8(5): 441-453.
[23] 冯涛, 曾小兰, 张钰, 等. 短链葡聚糖包合姜黄素的分子机制[J]. 现代食品科技, 2018, 34(10): 111-116;140.
[24] 段丹辉. 高温和定点突变方法对蛋白质的结构稳定性研究[D]. 开封:河南大学, 2014.
[25] 陈志国, 傅毅, 须文波. 分子动力学模拟研究CGTase酶活性区域的热稳定性[J]. 计算机与应用化学, 2013, 30(9): 967-972.
[26] ZHANG H, SANG J C, ZHANG Y, et al. Rational design of a Yarrowia lipolytica derived lipase for improved thermostability[J]. International Journal of Biological Macromolecules, 2019, 137: 1 190-1 198.
[27] CHEVALIER F, CHOBERT J M, POPINEAU Y, et al. Improvement of functional properties of β-lactoglobulin glycated though the Maillard reaction is relation is related to the nature of the sugar[J]. International Dairy Journal, 2001, 11(3): 145-152.
[28] CHEVALIER F, CHOBERT J M, DALGALARRONDO M, et al. Characterization of the maillard reaction products of β-lactoglobulin glucosylated in mild condition[J]. Journal of Food Biochemistry, 2001, 25(1): 33-55.
[29] RAHAMAN T, VASILJEVIC T, RAMCHANDRAN L. Conformational changes of β-lactoglobulin induced by shear, heat, and pH—effects on antigenicity[J]. Journal of Dairy Science, 2015, 98(7): 4 255-4 265.
[30] 程金波, 王加启, 李珊珊, 等. 不同热处理方式对牛奶中IgG和乳铁蛋白的影响[J]. 华北农学报, 2010, 25(S1): 170-174.
[31] 李雪. 超声波对β-乳球蛋白结构、免疫特性和美拉德反应的影响[D]. 南昌:南昌大学, 2016.