Based on centrifugal force driving principle and recombinase-aid amplification technology, a centrifugal microfluidic chip system for rapid detection of cattle, sheep, pig, duck and chicken-derived ingredients was developed. The fan-shaped microfluidic chip, the sealing cover and the chip tray were designed and manufactured. A portable microfluidic rapid detection instrument integrating constant temperature control platform, fluid control module and photoelectric detection module was built, which using constant temperature amplification of nucleic acid and fluorescence detection methodology. This instrument can detect 5 samples at the same time, and 5 indicators can be detected simultaneously for each sample. The results showed that the minimum mass fraction detected in cattle, sheep, pig, duck and chicken-derived ingredients by centrifugal microfluidic chip system is 1%, 1%, 0.1%, 0.1% and 1% respectively. The centrifugal microfluidic chip system can realize semi-quantitative detection within 30 min. This system is fast, automatic and high-throughput which showed great potential for rapid detection of adulteration in meat products.
ZHOU Xinli
,
SHEN Bingyang
,
GAO Lijuan
,
KONG Bing
,
YE Jiaming
. Development of centrifugal microfluidic chip system for rapid detection of five animal-derived components[J]. Food and Fermentation Industries, 2020
, 46(3)
: 229
-234
.
DOI: 10.13995/j.cnki.11-1802/ts.021457
[1] 高志强, 汪琳, 蒲静, 等. 双重实时荧光PCR定量检测动物产品中牛源性成分[J]. 生物技术通报, 2018, 34(9): 190-194.
[2] 侯东军, 韩合敬,郝智慧, 等. 三重荧光PCR法鉴定食品中牛、猪、鸭3种动物源性成分[J]. 畜牧与兽医, 2016, 48(4): 45-48.
[3] 支琴, 郭金超, 龚强. 肉制品中动物源性成分DNA检测方法的研究进展[J]. 食品安全质量检测学报, 2018, 9(16): 4 204-4 211.
[4] 程浩, 李明生, 陈士恩, 等. 食品中猪源性成分检测方法研究进展[J]. 食品与机械, 2018, 34(8): 169-172.
[5] 崔震昆, 周威, 胡梁斌, 等. 动物源性食品安全检测技术研究进展[J]. 食品工业科技, 2018, 39(20): 314-319.
[6] 李家鹏, 乔晓玲, 田寒友, 等. 食品和饲料中动物源性成分检测技术研究进展[J]. 食品科学, 2011, 32(9): 340-347.
[7] 李宗梦, 赵良娟, 赵宏, 等. 肉及肉制品动物源性成分鉴别技术研究进展[J]. 食品研究与开发, 2014, 35(18): 122-127.
[8] 石盼盼, 李旭, 吴昊, 等. 肉及肉制品中动物源性成分核酸检测方法研究进展[J]. 食品研究与开发, 2016, 37(10): 211-214.
[9] 袁帅, 郑夔, 洪烨, 等. 重组酶介导扩增方法快速检测寨卡病毒[J]. 中国国境卫生检疫杂志, 2018, 41(3): 159-161.
[10] 张小平, 郑乐怡, 魏莹, 等. 重组酶介导扩增技术快速检测沙门菌方法的建立[J]. 中国国境卫生检疫杂志, 2017, 40(5): 317-319.
[11] 赵松, 李婷, 杨坤, 等. 重组酶介导的日本血吸虫特异性基因片段核酸等温扩增检测方法的建立[J]. 中国血吸虫病防治杂志, 2018, 30(3): 273-277.
[12] GIUFFRIDA M C, SPOTO G. Integration of isothermal amplification methods in microfluidic devices: Recent advances[J]. Biosens Bioelectron, 2017, 90: 174-186.
[13] AGUSTIN GONZÁLEZ C, MIRIAM H, MIGUEL ANGEL L, et al. Real sample analysis on microfluidic devices[J]. Talanta, 2007, 74(3): 342-357.
[14] HAMON M, OYARZABAL O A, HONG J W. Nanoliter/picoliter scale fluidic systems for food safety[J]. Acs Symposium, 2013, 1 143:145-165.
[15] JEONG-YEOL Y, BUMSANG K. Lab-on-a-chip pathogen sensors for food safety[J]. Sensors, 2012, 12(8): 10 713-10 741.
[16] 吕蓓, 程海荣, 严庆丰, 等. 体外核酸快速扩增技术的发展和不断创新[J]. 中国生物工程杂志, 2011, 31(3): 91-96.
[17] 周新丽, 申炳阳, 孔兵, 等. 用于水产品中甲醛、双氧水和二氧化硫同时快速检测的微流控芯片系统研制[J]. 食品与发酵工业, 2019, 45(4): 196-201.
[18] 苑宝龙, 王晓东, 杨平, 等. 用于农药残留现场快速检测的微流控芯片研制[J]. 食品科学, 2016, 37(2): 198-203.
[19] 叶嘉明, 邵佳美, 杨平, 等. 用于农残快速检测的离心式微流控芯片研制[J]. 食品科学, 2017, 38(12): 292-297.
[20] GB/T 25165—2010 明胶中牛、羊、猪源性成分的定性检测方法-实时荧光PCR法[S]. 北京: 中国标准出版社, 2010.