Utilization of xylose and phenol and fermentation of straw to produce feed by mutagenic strains of Rhodopseudomonas capsulata

  • LI Guoqiang ,
  • LUO Ping ,
  • KANG Jiawei ,
  • HU Ruizhou ,
  • ZHANG Jian
Expand
  • 1(School of Food and Biotechnology, Xihua University, Chengdu 610039,China)
    2(School of Life Science and Food Engineering, Yibin University, Yibin 644000,China)

Received date: 2019-08-21

  Online published: 2020-04-24

Abstract

To improve the utilization and detoxification capacity of Rhodopseudomonas capsulata on corn straw degradation products and convert the straw into feed, ethyl methane sulfonate, and ultraviolet rays were used as mutagens to mutagenize Rhodopseudomonas capsulata. The utilization capacity of the mutagenic strains on xylose and phenol was determined, and the pretreated corn straw was fermented to produce feed. The results showed that after the mutant strain (named FJM) was continuously subcultured for 10 times, the utilization rate of phenol and xylose were 97.73% and 94.44%, respectively, after 72 h of inoculation. When the mutant strain was used to ferment and transform the pretreated corn straw under the conditions of straw layer thickness of 4.5 cm, inoculum size of 3×108 pieces /mL, material-water ratio of 1:10 (straw g/ distilled water g), shaking table speed of 120 r/min, fermentation temperature of 31℃, and fermentation time of 6 d, the true protein content of fermented straw increased from 4.12% to 23.87%, crude cellulose decreased from 37.53% to 14.37%, fat increased from 4.43% to 6.51%, crude ash content decreased from 4.0% to 3.51%, and the moisture content rate of fermented dried grain was 9.97%. Therefore, FJM can increase the feed value of straw and has potential in the research of converting straw into high-protein feed.

Cite this article

LI Guoqiang , LUO Ping , KANG Jiawei , HU Ruizhou , ZHANG Jian . Utilization of xylose and phenol and fermentation of straw to produce feed by mutagenic strains of Rhodopseudomonas capsulata[J]. Food and Fermentation Industries, 2020 , 46(6) : 199 -204 . DOI: 10.13995/j.cnki.11-1802/ts.022047

References

[1] 吕中旺, 王建, 孙鹏, 等. 秸秆主产区三大作物秸秆饲用品质分析与评价[J]. 草业科学, 2018, 35(8): 2 016-2 021.
[2] JUAN L, AKIBER C W, HAIRONG Y, et al. Natural freezing-thawing pretreatment of corn stalk for enhancing anaerobic digestion performance[J]. Bioresource Technology,2019, 288:118-121.
[3] 王长波, 平英华, 刘先才, 等. 我国秸秆资源“五化”利用研究进展[J]. 安徽农业科学, 2018, 46(7): 22-26;29.
[4] HU X F, JIANG H F, ZHANG Y J. Effect of fipronil on biogas production performance during anaerobic digestion of chicken manure and corn straw[J]. Journal of environmental science and health, Part B, 2019, 54(6): 449-458.
[5] CHEN X G. Economic potential of biomass supply from crop residues in China[J]. Applied Energy, 2016, 166: 141-149.
[6] 王旭辉, 徐鑫, 宝哲, 等. 高通量测序分析玉米秸秆与牛粪联合发酵阶段微生物多样性变化[J]. 食品与发酵工业, 2019, 45(3): 47-55.
[7] VIOLA E, ZIMBARDI F, CARDINALE M, et al. Gambacorta. Processing cereal straws by steam explosion in a pilot plant to enhance digestibility in ruminants[J]. Bioresource Technology, 2008, 99(4): 681-689.
[8] SANCHEZ O J, CARDONA C A. Trends in biotechnological production of fuel ethanol from different feedstocks[J]. Bioresource Technology, 2008, 99(13): 5 270-5 295.
[9] MONLAU F, SAMBUSITI C, BARAKAT A, et al. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review[J]. Biotechnology Advances,2014,32(5):934-951.
[10] 黎建斌, 何为. 粘稠性荚膜红假单胞菌对黄沙鳖稚鳖水质及生产性能的影响[J]. 河北渔业, 2011,32(10): 22-25.
[11] WU PAN, HAN Ziqiao, MO Wentao, et al. Soybean processing wastewater supported the removal of propyzamide and biochemical accumulation from wastewater by Rhodopseudomonas capsulata[J]. Bioprocess and biosystems engineering, 2019, 42(8): 1 375-1 384.
[12] SHI X Y, YU H Q. Conversion of individual and mixed volatile fatty acids to hydrogen by Rhodopseudomonas capsulata[J]. International Biodeterioration & Biodegradation, 2006, 58(2): 82-88.
[13] 黎建斌, 何为, 李大列, 等. 高活性荚膜红假单胞菌分离鉴定及应用[J]. 南方农业学报, 2012, 43(4): 540-543.
[14] SHI Xianyang, LI Wenwei, YU Hanqing. Key parameters governing biological hydrogen production from benzoate by Rhodopseudomonas capsulata[J]. Applied Energy, 2014, 133: 121-126.
[15] 路亚婷. 甲基磺酸乙酯(EMS)诱变定向提高酿酒酵母对糠醛耐受性的初步研究[D]. 雅安:四川农业大学, 2017.
[16] 李翔. 微生物诱变育种技术[J]. 现代商贸工业, 2017(34): 185-187.
[17] 管斌, 丁友昉, 谢来苏, 等. 还原糖测定方法的规范[J]. 无锡轻工大学学报, 1999,18(3): 74-79.
[18] GAO Mairui, XU Qianda, HE Qiang, et al. A theoretical and experimental study: The influence of different standards on the determination of total phenol content in the Folin-Ciocalteu assay[J]. Journal of Food Measurement and Characterization, 2019, 13(2): 1 349-1 356.
[19] 王海静, 朱风华. 三氯乙酸法与硫酸铜法测定饲料真蛋白比较[J]. 饲料研究, 2012(11):69-71.
[20] 吴国峰, 李国全, 马永强. 工业发酵分析[M]. 北京: 化学化工出版社, 2006.
[21] WANG Xing, XU Yong, FAN Li. Simultaneous sepapation and quantitative determination of monosaccharides, uronic acids, and aldonic acids by high performance anion-exchange chromatography coupled with pulsed amperometric detection in corn stover prehydrolysates[J]. Bioresources, 2012, 7 (4): 4 614-4 625.
[22] 巩莉, 华颖, 刘大群, 等. 利用番茄废渣混菌固体发酵生产蛋白饲料[J]. 食品与发酵工业, 2015, 41(5): 116-121.
[23] 黄林丽, 谢斌, 陈立, 等. 公共餐厨垃圾饲料化利用的混合菌发酵工艺[J]. 食品与发酵工业, 2019, 11(4):1-7.
[24] 季彬, 祁宏山, 杜军国, 等. 玉米秸秆发酵生产单细胞蛋白饲料前景研究[J]. 中国畜禽种业, 2016, 12(10): 33-35.
[25] 张阿强. 混菌固态发酵玉米秸秆产单细胞蛋白饲料的研究[D]. 兰州:兰州交通大学, 2017.
[26] 刘捷豹, 邱宏端, 林娟, 等. 荚膜红假单胞菌产类胡萝卜素的培养基优化实验[J]. 食品与发酵工业, 2005,31(5): 167-170.
[27] 邱宏端, 李明伟, 陈聪辉, 等. 耐盐红螺菌科细菌发酵酱渣生产蛋白饲料的工艺研究[J]. 农业工程学报, 2002,18(6): 118-122.
[28] ZHANG Jian, YUAN Jie, ZHANG Wenxue, et al. Anaerobic detoxification fermentation by Rhodospirillum rubrum for rice straw as feed with moderate pretreatment[J]. Preparative Biochemistry and Biotechnology, 2018, 48(1): 75-83.
[29] 曾宇, 谭四军. 利用光合菌发酵对玉米秸杆进行转化的研究[J]. 微生物学通报, 2001,28(6): 5-9.
Outlines

/