[1] HATHOUT A S, ALY S E. Biological detoxification of mycotoxins: a review [J]. Annals of Microbiology, 2014, 64(3): 905-919.
[2] CAO H, ZHI Y, XU H, et al. Zearalenone causes embryotoxicity and induces oxidative stress and apoptosis in differentiated human embryonic stem cells [J]. Toxicol In Vitro, 2019, 54:243-250.
[3] SCHULZ M C, SCHUMANN L, ROTTKORD U, et al. Synergistic action of the nephrotoxic mycotoxins ochratoxin A and citrinin at nanomolar concentrations in human proximal tubule-derived cells [J]. Toxicol Lett, 2018, 291:149-157.
[4] LUO Y, LIU X, LI J. Updating techniques on controlling mycotoxins-A review [J]. Food Control, 2018, 89:123-132.
[5] GAVAHIAN M, CULLEN P J. Cold plasma as an emerging technique for mycotoxin-free food: Efficacy, mechanisms, and trends [J]. Food Reviews International, 2019,1: 1-22.
[6] PANKAJ S K, SHI H, KEENER K M. A review of novel physical and chemical decontamination technologies for aflatoxin in food [J]. Trends in Food Science & Technology, 2018, 71:73-83.
[7] ALSHANNAQ A, YU J H. Occurrence, toxicity, and analysis of major mycotoxins in food [J]. Int J Environ Res Public Health, 2017, 14(6):632-651.
[8] HASKARD C A, EL-NEZAMI H S, KANKAANPAA P E, et al. Surface binding of aflatoxin B(1) by lactic acid bacteria [J]. Appl Environ Microbiol, 2001, 67(7): 3 086-3 091.
[9] JUODEIKIENE G, BARTKIENE E, CERNAUSKAS D, et al. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains [J]. Lwt, 2018, 89:307-314.
[10] NIDERKORN V, MORGAVI D P, ABOAB B, et al. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria [J]. J Appl Microbiol, 2009, 106(3): 977-985.
[11] KUHARIC Z, JAKOPOVIC Z, CANAK I, et al. Removing aflatoxin M1 from milk with native lactic acid bacteria, centrifugation, and filtration [J]. Arh Hig Rada Toksikol, 2018, 69(4): 334-339.
[12] MARTINEZ M P, MAGNOLI A P, GONZALEZ PEREYRA M L, et al. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites [J]. Toxicon, 2019,172:1-7.
[13] CHLEBICZ A, SLIZEWSKA K. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast [J]. Probiotics Antimicrob Proteins, 2019.
[14] TAHEUR F B, FEDHILA K, CHAIEB K, et al. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains [J]. Int J Food Microbiol, 2017, 251:1-7.
[15] ZHAI Y, HU S, ZHONG L, et al. Characterization of deoxynivalenol detoxification by Lactobacillus paracasei LHZ-1 isolated from yogurt [J]. J Food Prot, 2019, 82(8): 1 292-1 299.
[16] BEJAOUI H, MATHIEU F, TAILLANDIER P, et al. Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains [J]. J Appl Microbiol, 2004, 97(5): 1 038-1 044.
[17] ROGOWSKA A, POMASTOWSKI P, WALCZAK J, et al. Investigation of zearalenone adsorption and biotransformation by microorganisms cultured under cellular stress conditions [J]. Toxins (Basel), 2019, 11(8):463-480.
[18] LIEW W P, NURUL-ADILAH Z, THAN L T L, et al. The binding efficiency and interaction of Lactobacillus casei Shirota toward aflatoxin B1 [J]. Front Microbiol, 2018, 9:1 503-1 514.
[19] ARMANDO M R, PIZZOLITTO R P, DOGI C A, et al. Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness [J]. J Appl Microbiol, 2012, 113(2): 256-264.
[20] DAWLAL P, BRABET C, THANTSHA M S, et al. Visualisation and quantification of fumonisins bound by lactic acid bacteria isolates from traditional African maize-based fermented cereals, ogi and mahewu [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2019, 36(2): 296-307.
[21] AAZAMI M H, NASRI M H F, MOJTAHEDI M, et al. In vitro aflatoxin B1 binding by the cell wall and (1-->3)-beta-d-Glucan of Baker's Yeast [J]. J Food Prot, 2018, 81(4): 670-676.
[22] SEVIM S, TOPAL G G, TENGILIMOGLU-METIN M M, et al. Effects of inulin and lactic acid bacteria strains on aflatoxin M1 detoxification in yoghurt [J]. Food Control, 2019, 100:235-239.
[23] KROL A, POMASTOWSKI P, RAFINSKA K, et al. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp.[J]. Anal Bioanal Chem, 2018, 410(3): 943-952.
[24] SHI L, LIANG Z, LI J, et al. Ochratoxin A biocontrol and biodegradation by Bacillus subtilis CW 14 [J]. J Sci Food Agric, 2014, 94(9): 1 879-1 885.
[25] RUIYU Z. Inhibiting Aspergillus flavus growth and degrading aflatoxin B1 by combined beneficial microbes [J]. African Journal of Biotechnology, 2012, 11(65): 12 903-12 909.
[26] GAO X, MA Q, ZHAO L, et al. Isolation of Bacillus subtilis: screening for aflatoxins B1, M1, and G1 detoxification [J]. European Food Research and Technology, 2011, 232(6): 957-962.
[27] RISA A, DIVINYI D M, BAKA E, et al. Aflatoxin B1 detoxification by cell-free extracts of Rhodococcus strains [J]. Acta Microbiol Immunol Hung, 2017, 64(4): 423-438.
[28] MWAKINYALI S E, MING Z, XIE H, et al. Investigation and characterization of Myroides odoratimimus strain 3J2MO aflatoxin B1 degradation [J]. J Agric Food Chem, 2019, 67(16): 4 595-4 602.
[29] LIU D L, YAO D S, LIANG R, et al. Detoxification of aflatoxin B1 by enzymes isolated from Armillariella tabescens [J]. Food Chem Toxicol, 1998, 36(7): 563-574.
[30] ALBERTS J F, GELDERBLOM W C, BOTHA A, et al. Degradation of aflatoxin B(1) by fungal laccase enzymes [J]. Int J Food Microbiol, 2009, 135(1): 47-52.
[31] NAKAZATO M, MOROZUMI S, SAITO K, et al. Interconversion of aflatoxin B1 and aflatoxicol by several fungi [J]. Appl Environ Microbiol, 1990, 56(5): 1 465-1 470.
[32] TAN H, ZHANG Z, HU Y, et al. Isolation and characterization of Pseudomonas otitidis TH-N1 capable of degrading Zearalenone [J]. Food Control, 2015, 47:285-290.
[33] WANG N, LI P, PAN J, et al. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by Zearalenone in mice [J]. Sci Rep, 2018, 8(1): 13 646-13 659.
[34] WANG G, YU M, DONG F, et al. Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21 [J]. Food Control, 2017, 77:57-64.
[35] YI P J, PAI C K, LIU J R. Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone [J]. World Journal of Microbiology and Biotechnology, 2010, 27(5): 1 035-1 043.
[36] ZHAO L, JIN H, LAN J, et al. Detoxification of zearalenone by three strains of Lactobacillus plantarum from fermented food in vitro [J]. Food Control, 2015, 54:158-164.
[37] WANG N, WU W, PAN J, et al. Detoxification strategies for zearalenone using microorganisms: A review [J]. Microorganisms, 2019, 7(7): 208-221.
[38] VEKIRU E, HAMETNER C, MITTERBAUER R, et al. Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite [J]. Appl Environ Microbiol, 2010, 76(7): 2 353-2 359.
[39] TINYIRO S E, WOKADALA C, XU D, et al. Adsorption and degradation of zearalenone by Bacillus strains [J]. Folia Microbiol (Praha), 2011, 56(4): 321-327.
[40] BEN SALEM I, BOUSSABBEH M, PIRES DA SILVA J, et al. SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites alpha- and beta-zearalenol through an autophagy-dependent pathway [J]. Toxicol Appl Pharmacol, 2017, 314:82-90.
[41] HARTINGER D, MOLL W. Fumonisin elimination and prospects for detoxification by enzymatic transformation [J]. World Mycotoxin Journal, 2011, 4(3): 271-283.
[42] ZHAO Z, ZHANG Y, GONG A, et al. Biodegradation of mycotoxin fumonisin B1 by a novel bacterial consortium SAAS79 [J]. Appl Microbiol Biotechnol, 2019, 103(17): 7 129-7 140.
[43] RODRIGUEZ H, REVERON I, DORIA F, et al. Degradation of ochratoxin a by Brevibacterium species [J]. J Agric Food Chem, 2011, 59(19): 10 755-10 760.
[44] VARGA J, PETERI Z, TABORI K, et al. Degradation of ochratoxin A and other mycotoxins by Rhizopus isolates [J]. Int J Food Microbiol, 2005, 99(3): 321-328.
[45] CHEN W, LI C, ZHANG B, et al. Advances in biodetoxification of ochratoxin A-A review of the past five decades [J]. Front Microbiol, 2018, 9:1 386.
[46] CHANG X, WU Z, WU S, et al. Degradation of ochratoxin A by Bacillus amyloliquefaciens ASAG1 [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2015, 32(4): 564-571.
[47] ZHANG X, YANG H, APALIYA M T, et al. The mechanisms involved in ochratoxin A elimination by Yarrowia lipolytica Y-2 [J]. Annals of Applied Biology, 2018, 173(2): 164-174.
[48] LOI M, FANELLI F, LIUZZI V C, et al. Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives [J]. Toxins (Basel), 2017, 9(4):111.
[49] GAO X, MU P, WEN J, et al. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9 [J]. Food Chem Toxicol, 2018, 112:310-319.
[50] ISLAM R, ZHOU T, YOUNG J C, et al. Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil [J]. World J Microbiol Biotechnol, 2012, 28(1): 7-13.
[51] HE W J, YUAN Q S, ZHANG Y B, et al. Aerobic de-epoxydation of trichothecene mycotoxins by a soil bacterial consortium isolated using in situ soil enrichment [J]. Toxins (Basel), 2016, 8(10): 277-289.
[52] QU R, JIANG C, WU W, et al. Conversion of DON to 3-epi-DON in vitro and toxicity reduction of DON in vivo by Lactobacillus rhamnosus [J]. Food Funct, 2019, 10(5): 2 785-2 796.
[53] PETCHKONGKAEW A, TAILLANDIER P, GASALUCK P, et al. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin B1 and ochratoxin A detoxification [J]. J Appl Microbiol, 2008, 104(5): 1 495-1 502.