Isolation, purification and structural elucidation of AHP polysaccharide from Phlebopus portentosus

  • WU Yan ,
  • ZHU Jiahao ,
  • WANG Wei ,
  • SHEN Liqun
Expand
  • 1 (Xingyi Normal University for Nationalities, Xingyi 562400, China)
    2 (College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China)
    3 (Key Laboratory of Development and Application of Forest Chemicals of Guangxi, Nanning 530006, China)

Received date: 2019-09-03

  Online published: 2020-05-20

Abstract

In order to explorer the structure of polysaccharides from Phlebopus portentosus which was collected from Xingyi, Guizhou. The crude polysaccharide was extracted by hot water extraction method, and then successively purified by deproteinization, decoloration and column chromatography, a refined polysaccharide was obtained after purification, named AHP. The structural characteristics of AHP were elucidated by chromatographic methods. Infrared spectrometer(IR) and nuclear magnetic resonance(NMR)indicated that AHP is typical α-pyranose with characteristic peaks of polysaccharides. The monosaccharide composition was evaluated by high performance liquid chromatography(HPLC)using pre-column derivatization with 3-methyl-1-phenyl-5-pyrazolone (PMP),and AHP was found to consist of mannose, rhamnose, glucose, galactose and fucose, with a molar ratio of 1.54∶0.07∶0.25∶1.72∶0.96. The molecular weight was determined to be 2.03×104 Da by high performance gel-permeation chromatography(HPGPC).The methylated derivatives analysis suggested that the main linkage form in AHP were →1,6)-Galp,→1,3)- Glcp,→2,4)- Manp and →1)- Galp. The scanning electron microscope was used to observe AHP and showed reticular structure dominated, with a small amount of spherical and filamentous polysaccharides. This paper presents the primary structure of polysaccharide from Phlebopus portentosus. It will lay a foundation for further understanding the polysaccharide activity mechanism of Phlebopus portentosus.

Cite this article

WU Yan , ZHU Jiahao , WANG Wei , SHEN Liqun . Isolation, purification and structural elucidation of AHP polysaccharide from Phlebopus portentosus[J]. Food and Fermentation Industries, 2020 , 46(8) : 92 -96 . DOI: 10.13995/j.cnki.11-1802/ts.022169

References

[1] 李泰辉,宋斌.中国牛肝菌已知种类[J].贵州科学,2003,21(1-2):78- 83.
[2] 胡生华,朱志钢,李文佳,等.暗褐网柄牛肝菌研究进展[J].食用菌,2018,40(1):6-8.
[3] 王林,马青云,黄圣卓,等.牛肝菌化学成分及其生物活性的研究进展[J].热带生物学报,2017,8(1):127-132.
[4] 兰茂.滇南本草[M].昆明:云南人民出版社,1959.
[5] JATURONG KUMLA, BOONSOM BUSSABAN, NAKARIN SUWANNARACH, et al. Basidiome formation of an edible wild, putatively ectomycorrhizal fungus, Phlebopus portentosus without host plant[J]. Mycologia, 2012, 104(3):597-603.
[6] 刘静,何明霞,王文兵,等.暗褐网柄牛肝菌仿生栽培研究[J].西南农业学报,2017,30(5):1 176-1 182.
[7] 何明霞,许欣景,高锋,等.暗褐网柄牛肝菌优良菌株的筛选[J].食用菌学报,2017,24(1):33-38.
[8] 曹旸,方艺伟,高锋,等.暗褐网柄牛肝菌交配系统研究[J].北方园艺,2016(24):133-135.
[9] 刘静,高锋,张春霞,等.云南暗褐网柄牛肝菌发生地的特点及土壤分析[J].北方园艺,2018(7):139-146.
[10] CAO Y, ZHANG Y, YU Z F, et al. Genome sequence of Phlebopus portentosus strain PP33, a cultivated bolete[J]. Genome Announcements, 2015, 3(2):326.
[11] 曹旸,何明霞,高锋,等.基于SSR标记的暗褐网柄牛肝菌遗传多样性分析[J].北方园艺,2017(8):111-114.
[12] 郭磊,华燕,王军民.牛肝菌生物活性成分研究进展[J].食品研究与开发,2019,40(19):220-224.
[13] 赵云霞,陶明煊,郭永月,等.黑牛肝菌多糖多酒精性损伤小鼠心脏及脾脏抗氧化作用的研究[J].南京师范大学学报,2014,37(1):133-136.
[14] 何山文,雷琼,马立安.2种提取野生蕈菌DNA方法的比较及其应用[J].长江大学学报(自科版),2018,15(6):43-47.
[15] 伍燕,申利群,朱华.假芝菌丝体多糖ARP的纯化、结构及抗氧化活性[J].食品与发酵工业,2019,45(9):214-219.
[16] 臧穆.中国真菌志·第二十二卷·牛肝菌科(I)[M].北京:科学出版社,2012:158-159.
[17] 邸维,张英春,易华西,等.乳酸菌胞外多糖结构解析的研究方法[J].分析化学,2018,46(6):875-882.
[18] 张化朋,张静,南征,等.杏鲍菇多糖WPP2的结构表征及抗肿瘤活性[J].高等学校化学学报,2013,34(10):2 327-2 333.
[19] 范三红,贾槐旺,张锦华,等.羊肚菌多糖纯化、结构分析及抗氧化活性[J].食品与发酵工业,2020,46(3):256-262.
[20] 刘玉红,王凤山.核磁共振波谱法在多糖结构分析中的应用[J].食品与药品,2007,9(8):39-43.
[21] 田有秋,贾金霞,束旭,等.淡红侧耳子实体多糖的分离纯化及结构探析[J].食品与发酵工业,2018,44(12):66-72.
[22] 阮家耀,王星丽,瞿亮,等.杏鲍菇子实体多糖的分离纯化及结构研究[J].食品与发酵工业,2014,40(4):77-81.
[23] 葛梦蝶,代安然,杨崇婧,等.虎奶菇菌丝体细胞壁成分分析及多糖结构表征[J/OL].食品与发酵工业,http://kns.cnki.net/kcms/detail/11.1802.TS.20200120.1513.024.html.
Outlines

/