To probe the oenological properties of a strain of non-Saccharomyces yeast from Rosa roxburghii (R. roxburghii), the physiological features were analyzed including the glucose tolerance, citric acid tolerance, alcohol tolerance, sulfur dioxide tolerance, β-glycosidase and sulfuretted hydrogen producing ability. Then, this non-Saccharomyces yeast F119 and Saccharomyces cerevisiae (S. cerevisiae) were used as the fermentation starter to produce R. roxburghii wine. The effect of F119 strain on the quality of R. roxburghii wine was investigated from the physicochemical indexes, sensory evaluation and aroma profiles. Morphological and molecular biology results indicated that F119 was a strain of Hanseniaspora uvarum (H. uvarum) from R. roxburghii. The F119 strain had a similar citric acid tolerance and sulfur dioxide tolerance with S. cerevisiae X16. However, the glucose tolerance, alcohol tolerance and β-glycosidase producing ability were lower than those of X16. And the F119 strain did not produce sulfuretted hydrogen. Moreover, the mixed fermentation of F119 strain with S. cerevisiae could reduce the contents of volatile acid and residual sugar of R. roxburghii wine, while not affecting the sensory evaluation. In addition, the F119 strain co-inoculation with S. cerevisiae increased the varieties or contents of volatile acids, volatile ethers and volatile hydrocarbons, and also decreased the kinds or concentrations of volatile alcohols, volatile esters, volatile phenols and volatile aldehydes.
LIU Xiaozhu
,
ZHAO Hubing
,
LI Yinfeng
,
YU Zhihai
,
LIU Xiaohui
,
HUANG Mingzheng
. Identification and oenological properties analysis of a strain of Hanseniaspora uvarum from Rosa roxburghii[J]. Food and Fermentation Industries, 2020
, 46(8)
: 97
-104
.
DOI: 10.13995/j.cnki.11-1802/ts.022942
[1] HU L, WANG J, JI X, et al. Selection of non-Saccharomyces yeasts for orange wine fermentation based on their enological traits and volatile compounds formation[J]. Journal of Food science and Technology, 2018, 55(10): 4 001-4 012.
[2] ALONSO-DEL-REAL J, LAIRÁN-PERIS M, BARRIO E, et al. Effect of temperature on the prevalence of Saccharomyces non cerevisiae species against a S. cerevisiae wine strain in wine fermentation: competition, physiological fitness, and influence in final wine composition[J]. Frontiers in Microbiology, 2017, 8: 150.
[3] WANG C, MAS A, ESTEVE-ZARZOSO B. The interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during alcoholic fermentation is species and strain specific[J]. Frontiers in Microbiology, 2016, 7: 502.
[4] PÉREZ-TORRADO R, BARRIO E, QUEROL A. Alternative yeasts for winemaking: Saccharomyces non-cerevisiae and its hybrids[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(11): 1 780-1 790.
[5] BALLESTER-TOMÓS L, PRIETO J A, GIL J V, et al. The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine[J]. International Journal of Food Microbiology, 2017, 245: 59-65.
[6] KONG C L, LI A H, SU J, et al. Flavor modification of dry red wine from Chinese spine grape by mixed fermentation with Pichia fermentans and S. cerevisiae[J]. LWT, 2019, 109: 83-92.
[7] LLEIXÀ J, MARTÍN V, PORTILLO M C, et al. Comparison of fermentation and wines produced by inoculation of Hanseniaspora vineae and Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2016, 7: 338.
[8] CHEN D, YAP Z Y, LIU S Q. Evaluation of the performance of Torulaspora delbrueckii, Williopsis saturnus, and Kluyveromyces lactis in lychee wine fermentation[J]. International Journal of Food Microbiology, 2015, 206: 45-50.
[9] VARELA C, SENGLER F, SOLOMON M, et al. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum[J]. Food Chemistry, 2016, 209: 57-64.
[10] CLEMENTE-JIMENEZ J M, MINGORANCE-CAZORLA L, MARTÍNEZ-RODRÍGUEZ S, et al. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must[J]. Food Microbiology, 2004, 21(2): 149-155.
[11] ANFANG N,BRAJKOVICH M,GODARD M R. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc[J]. Australian Journal of Grape and Wine Research 2009, 15(1):1-8.
[12] BENITO S, MORATA A, PALOMERO F, et al. Formation of vinylphenolic pyranoanthocyanins by Saccharomyces cerevisiae and Pichia guillermondii in red wines produced following different fermentation strategies[J]. Food Chemistry, 2011, 124(1): 15-23.
[13] 谢丹,刘晓燕,毕远林,等.基于高通量测序分析刺梨果渣自然发酵过程中细菌群落结构及多样性[J].食品工业科技,2019,40(22):110-114.
[14] 姚敏. 刺梨果酒技术研究[D].贵阳:贵州大学,2015.
[15] 贺红早,张玉武,刘盈盈,等.三种酵母对无籽刺梨果酒品质的影响[J].酿酒科技,2015(10):10-13.
[16] 张丹,韦广鑫,曾凡坤.贵州不同产地无籽刺梨的基本营养成分及香气物质比较[J].食品科学,2016,37(22):166-172.
[17] 侯晓瑞,王婧,杨学山,等.甘肃河西走廊葡萄酒产区高产β-葡萄糖苷酶酵母菌株筛选[J].食品科学,2014, 35(23):139-143.
[18] 陈思奇,孟满,杜勃峰,等.基于主成分分析与聚类分析综合评价不同菌种发酵刺梨果渣的香气品质[J].中国酿造,2019,38(6):152-159.
[19] 蒋宝,张振文.地形对黄土高原地区赤霞珠葡萄酒香气成分的影响[J].食品与发酵工业,2017,43(12):184-190.
[20] 黄国柱,黄一萍,唐玉芳.培养野生酵母酿制刺梨酒[J].食品科学,1990,11(9):48-51.
[21] TRISTEZZA M, TUFARIELLO M, CAPOZZI V, et al. The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for industrial wine production[J]. Frontiers in Microbiology, 2016, 7: 670.
[22] HU K, QIN Y, TAO Y S, et al. Potential of glycosidase from non-Saccharomyces isolates for enhancement of wine aroma[J]. Journal of Food Science, 2016, 81(4): M935-M943.
[23] MAICAS S, MATEO J J. Microbial glycosidases for wine production[J]. Beverages, 2016, 2(3): 20.
[24] CHADHA B S, MONGA A, OBEROI H S. α-L-arabinofuranosidase from an efficient hemicellulolytic fungus Penicillium janthinellum capable of hydrolyzing wheat and rye arabinoxylan to arabinose[J]. Journal of Microbiology, Biotechnology & Food Sciences, 2017, 6(5): 1 132-1 139.
[25] KUMAR D, YADAV S, YADAVA S, et al. An alkali tolerant α-L-rhamnosidase from Fusarium moniliforme MTCC-2088 used in de-rhamnosylation of natural glycosides[J]. Bioorganic Chemistry, 2019, 84: 24-31.
[26] RODIONOVA N A, TAVOBILOV I M, BEZBORODOV A M. Beta-Xylosidase from Aspergillus niger 15: Purification and properties[J]. Journal of Applied Biochemistry, 1983, 5(4-5): 300-312.