[1] XIONG Y L. Structure-function relationships of muscle proteins[M]. New York: CRC Press, 2017:341-392.
[2] 王静宇, 杨玉玲, 康大成, 等. 超声波对肌原纤维蛋白热诱导凝胶化学作用力与保水性的影响[J]. 中国农业科学, 2017,50(12):2 349-2 358.
[3] 徐幸莲. 兔骨骼肌肌球蛋白热诱导凝胶特性及成胶机制研究[D]. 南京:南京农业大学, 2003.
[4] VISESSANGUAN W, OGAWA M, NAKAI S, et al. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin[J]. Journal of Agricultural and Food Chemistry, 2000, 48(4):1 016-1 023.
[5] LI Q, WANG P, MIAO S, et al. Curdlan enhances the structure of myosin gel model[J]. Food Science & Nutrition, 2019, 7(6):2 123-2 130.
[6] 王静宇, 杨玉玲, 周磊, 等. 超声波对肌原纤维蛋白理化和质构特性的影响[J]. 食品工业科技, 2018,39(11):12-16.
[7] ZHANG Z, YANG Y, ZHOU P, et al. Effects of high-pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chemistry, 2017, 217:678-686.
[8] 王健一, 郭泽镔, 李致瑜, 等. 超高压处理对低盐鱼糜制品凝胶特性的影响研究[J]. 食品工业, 2018,39(02):58-62.
[9] WANG J, YANG Y, TANG X, et al. Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein[J]. Ultrasonics Sonochemistry, 2017, 38:225-233.
[10] 李长乐, 武雅琴, 王莉莎, 等. 超声波及超声波结合酸处理优化鲣鱼肌原纤维蛋白功能特性[J]. 食品与发酵工业, 2019,45(3):119-123.
[11] 费英, 韩敏义, 杨凌寒, 等. pH对肌原纤维蛋白二级结构及其热诱导凝胶特性的影响[J]. 中国农业科学, 2010,43(1):164-170.
[12] 倪娜, 王振宇, 韩志慧, 等. pH对羔羊背最长肌肌原纤维蛋白热诱导凝胶的影响[J]. 中国农业科学, 2013,46(17):3 680-3 687.
[13] ZHANG Z, YANG Y, TANG X, et al. Effects of ionic strength on chemical forces and functional properties of heat-induced myofibrillar protein gel[J]. Food Science and Technology Research, 2015, 21(4):597-605.
[14] 董唯, 白登荣, 窦川林, 等. 不同体系条件下γ-聚谷氨酸复合TGase处理对肌原纤维蛋白功能性质的影响[J]. 肉类研究, 2018,32(5):1-8.
[15] ZHOU L, YANG Y, WANG J, et al. Effects of low fat addition on chicken myofibrillar protein gelation properties[J]. Food Hydrocolloids, 2019, 90:126-131.
[16] 夏秀芳, 黄莉, 吕鸿鹄, 等. 马铃薯淀粉对鲤鱼肌原纤维蛋白功能特性的影响[J]. 食品工业, 2015,36(3):177-181.
[17] PUOLANNE E, HALONEN M. Theoretical aspects of water-holding in meat[J]. Meat Science, 2010, 86(1):151-165.
[18] GUO J, ZHOU Y, YANG K, et al. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins[J]. Food Chemistry, 2019, 274:775-781.
[19] BAO Y, BOEREN S, ERTBJERG P. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding[J]. Meat Science, 2018, 135:102-108.
[20] ZHOU L, FENG X, YANG Y, et al. Effects of high-speed shear homogenization on properties and structure of the chicken myofibrillar protein and low-fat mixed gel[J]. LWT, 2019, 110:19-24.
[21] IWAMI Y, OJIMA T, INOUE A, et al. Primary structure of myosin heavy chain from fast skeletal muscle of Chum salmon Oncorhynchus keta[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2002, 133(2):257-267.
[22] 张兴, 杨玉玲, 王静宇, 等. 尿素对肌原纤维蛋白热诱导凝胶非共价键作用力及特性的影响[J]. 食品科学, 2017,38(11):12-17.
[23] LIU R, ZHAO S, XIONG S, et al. Role of secondary structures in the gelation of porcine myosin at different pH values[J]. Meat Science, 2008, 80(3):632-639.
[24] WU M, XIONG Y L, CHEN J. Role of disulphide linkages between protein-coated lipid droplets and the protein matrix in the rheological properties of porcine myofibrillar protein-peanut oil emulsion composite gels[J]. Meat Science, 2011, 88(3):384-390.
[25] YONGSAWATDIGUL J, PARK J W. Thermal denaturation and aggregation of threadfin bream actomyosin[J]. Food Chemistry, 2003, 83(3):409-416.
[26] RIEBROY S, BENJAKUL S, VISESSANGUAN W, et al. Acid-induced gelation of natural actomyosin from Atlantic cod (Gadus morhua) and burbot (Lota lota)[J]. Food Hydrocolloids, 2009, 23(1):26-39.
[27] VISESSANGUAN W, OGAWA M, NAKAI S, et al. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin[J]. Journal of Agricultural and Food Chemistry, 2000, 48(4):1 016-1 023.
[28] ZHANG Z, REGENSTEIN J M, ZHOU P, et al. Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel[J]. Ultrasonics - Sonochemistry, 2017, 34:960-967.
[29] SMYTH A B, SMITH D M, O'NEILL E. Disulfide bonds influence the head-induced chicken breast muscle myosin[J]. Journal of Food Science, 1998, 63(4):584-587.
[30] LIU K S, HSIEH F. Protein-protein interactions in high moisture-extruded meat analogs and heat-induced soy protein gels[J]. Journal of the American Oil Chemists' Society, 2007, 84(8):741-748.
[31] LIU G, XIONG Y L, BUTTERFIELD D A. Chemical, physical, and gel-forming properties of oxidized myofibrils and whey-and soy-protein isolates[J]. Journal of Food Science, 2000, 65(5):811-818.
[32] KO W C, YU C C, HSU K C. Changes in conformation and sulfhydryl groups of tilapia actomyosin by thermal treatment[J]. LWT—Food Science and Technology, 2007, 8(40):1 320.
[33] 潘锦锋, 沈慧星, 尤娟, 等. 草鱼肌原纤维蛋白加热过程中理化特性的变化[J]. 中国农业大学学报, 2009,14(6):17-22.
[34] ZHANG Z, YANG Y, ZHOU P, et al. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chemistry, 2017, 217:678-686.
[35] RELKIN P. Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters of β-lactoglobulin: their role in heat-induced sol-gel state transition[J]. International Journal of Biological Macromolecules, 1998, 22(1):59-66.
[36] SANTE-LHOUTELLIER V, AUBRY L, GATELLIER P. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins[J]. Journal of Agricultural and Food Chemistry, 2007, 55(13):5 343-5 348.
[37] 赵新淮, 徐红华, 姜毓君. 食品蛋白质—结构、性质与功能[M]. 北京:科学出版社, 2009.
[38] 韩敏义, 李伟锋, 王鹏, 等. 拉曼光谱研究NaCl浓度对猪肉肌原纤维蛋白凝胶硬度的影响[J]. 核农学报, 2014,28(12):2 192-2 199.
[39] ZHANG Z, YANG Y, TANG X, et al. Chemical forces study of heat-induced myofibrillar protein gel as affected by partial substitution of NaCl with KCl, MgCl2 and CaCl2[J]. CyTA - Journal of Food, 2016, 14(2):239-247.
[40] 张兴, 杨玉玲, 马云, 等. pH对肌原纤维蛋白及其热诱导凝胶非共价键作用力与结构的影响[J]. 中国农业科学, 2017,50(3):564-573.
[41] ZHANG Z, YANG Y, TANG X, et al. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure[J]. Food Chemistry, 2015, 188:111-118.
[42] SHIGERU UTSUMI J E K. Forces incolves in soy protein gelation: Effects of various reagents on the formation, hardness and solubility of heat-induced gels made form 7S, 11S, and soy isolate[J].Journal of Food Science, 1985, 50(5):1 278-1 282.
[43] 郭胜兰, 兰雅淇. 基于作用力探究凝胶因子与油凝胶之间的构效关系研究进展[J]. 食品科学, 2019,40(9):316-324.
[44] CAO H, WANG F, ZENG H, et al. Morphology tunable organogels based on benzoylhydrazine derivatives[J]. Journal of Molecular Liquids, 2014, 196:94-97.
[45] BADDI S, NAYAK R R, PALANISAMY A. Organogelation of self-assembling segmented poly(urethane acylsemicarbazides) and their dye adsorbing properties[J]. Polymer, 2017, 114:199-208.