Advances in heat-induced gel properties and chemical forces of myofibrillar protein gel

  • WANG Jingyu ,
  • HU Xin ,
  • LIU Xiaoyan ,
  • JI Hong ,
  • YANG Jingxia ,
  • LIU Xiaoli ,
  • CHEN Chen ,
  • QU Changqing
Expand
  • 1 (School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China)
    2 (Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang 236037, China)

Received date: 2019-11-16

  Online published: 2020-05-20

Abstract

Myofibrillar proteins are the main components of muscle. Heat-induced myofibrillar protein gel plays an important role in the processing of meat products, which determines the sensory qualities of comminuted meat products, such as springiness, juiciness, viscosity. The balance between disulfide bond, hydrogen bond, hydrophobic interaction and electrostatic interaction result in the formation of myofibrillar protein gels. And gel properties of myofibrillar protein depend on these forces in gel. Research advances of gel properties (texture, water-holding, rheology) and chemical forces of myofibrillar protein were summarized in terms of heat-induced gel formation mechanism and forces in the gel in this review. And then the deep cause (chemical forces) of myofibrillar protein gel formation mechanism was discussed, which significantly provided a theoretical basis for the application of comminuted meat gel products.

Cite this article

WANG Jingyu , HU Xin , LIU Xiaoyan , JI Hong , YANG Jingxia , LIU Xiaoli , CHEN Chen , QU Changqing . Advances in heat-induced gel properties and chemical forces of myofibrillar protein gel[J]. Food and Fermentation Industries, 2020 , 46(8) : 300 -306 . DOI: 10.13995/j.cnki.11-1802/ts.022820

References

[1] XIONG Y L. Structure-function relationships of muscle proteins[M]. New York: CRC Press, 2017:341-392.
[2] 王静宇, 杨玉玲, 康大成, 等. 超声波对肌原纤维蛋白热诱导凝胶化学作用力与保水性的影响[J]. 中国农业科学, 2017,50(12):2 349-2 358.
[3] 徐幸莲. 兔骨骼肌肌球蛋白热诱导凝胶特性及成胶机制研究[D]. 南京:南京农业大学, 2003.
[4] VISESSANGUAN W, OGAWA M, NAKAI S, et al. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin[J]. Journal of Agricultural and Food Chemistry, 2000, 48(4):1 016-1 023.
[5] LI Q, WANG P, MIAO S, et al. Curdlan enhances the structure of myosin gel model[J]. Food Science & Nutrition, 2019, 7(6):2 123-2 130.
[6] 王静宇, 杨玉玲, 周磊, 等. 超声波对肌原纤维蛋白理化和质构特性的影响[J]. 食品工业科技, 2018,39(11):12-16.
[7] ZHANG Z, YANG Y, ZHOU P, et al. Effects of high-pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chemistry, 2017, 217:678-686.
[8] 王健一, 郭泽镔, 李致瑜, 等. 超高压处理对低盐鱼糜制品凝胶特性的影响研究[J]. 食品工业, 2018,39(02):58-62.
[9] WANG J, YANG Y, TANG X, et al. Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein[J]. Ultrasonics Sonochemistry, 2017, 38:225-233.
[10] 李长乐, 武雅琴, 王莉莎, 等. 超声波及超声波结合酸处理优化鲣鱼肌原纤维蛋白功能特性[J]. 食品与发酵工业, 2019,45(3):119-123.
[11] 费英, 韩敏义, 杨凌寒, 等. pH对肌原纤维蛋白二级结构及其热诱导凝胶特性的影响[J]. 中国农业科学, 2010,43(1):164-170.
[12] 倪娜, 王振宇, 韩志慧, 等. pH对羔羊背最长肌肌原纤维蛋白热诱导凝胶的影响[J]. 中国农业科学, 2013,46(17):3 680-3 687.
[13] ZHANG Z, YANG Y, TANG X, et al. Effects of ionic strength on chemical forces and functional properties of heat-induced myofibrillar protein gel[J]. Food Science and Technology Research, 2015, 21(4):597-605.
[14] 董唯, 白登荣, 窦川林, 等. 不同体系条件下γ-聚谷氨酸复合TGase处理对肌原纤维蛋白功能性质的影响[J]. 肉类研究, 2018,32(5):1-8.
[15] ZHOU L, YANG Y, WANG J, et al. Effects of low fat addition on chicken myofibrillar protein gelation properties[J]. Food Hydrocolloids, 2019, 90:126-131.
[16] 夏秀芳, 黄莉, 吕鸿鹄, 等. 马铃薯淀粉对鲤鱼肌原纤维蛋白功能特性的影响[J]. 食品工业, 2015,36(3):177-181.
[17] PUOLANNE E, HALONEN M. Theoretical aspects of water-holding in meat[J]. Meat Science, 2010, 86(1):151-165.
[18] GUO J, ZHOU Y, YANG K, et al. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins[J]. Food Chemistry, 2019, 274:775-781.
[19] BAO Y, BOEREN S, ERTBJERG P. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding[J]. Meat Science, 2018, 135:102-108.
[20] ZHOU L, FENG X, YANG Y, et al. Effects of high-speed shear homogenization on properties and structure of the chicken myofibrillar protein and low-fat mixed gel[J]. LWT, 2019, 110:19-24.
[21] IWAMI Y, OJIMA T, INOUE A, et al. Primary structure of myosin heavy chain from fast skeletal muscle of Chum salmon Oncorhynchus keta[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2002, 133(2):257-267.
[22] 张兴, 杨玉玲, 王静宇, 等. 尿素对肌原纤维蛋白热诱导凝胶非共价键作用力及特性的影响[J]. 食品科学, 2017,38(11):12-17.
[23] LIU R, ZHAO S, XIONG S, et al. Role of secondary structures in the gelation of porcine myosin at different pH values[J]. Meat Science, 2008, 80(3):632-639.
[24] WU M, XIONG Y L, CHEN J. Role of disulphide linkages between protein-coated lipid droplets and the protein matrix in the rheological properties of porcine myofibrillar protein-peanut oil emulsion composite gels[J]. Meat Science, 2011, 88(3):384-390.
[25] YONGSAWATDIGUL J, PARK J W. Thermal denaturation and aggregation of threadfin bream actomyosin[J]. Food Chemistry, 2003, 83(3):409-416.
[26] RIEBROY S, BENJAKUL S, VISESSANGUAN W, et al. Acid-induced gelation of natural actomyosin from Atlantic cod (Gadus morhua) and burbot (Lota lota)[J]. Food Hydrocolloids, 2009, 23(1):26-39.
[27] VISESSANGUAN W, OGAWA M, NAKAI S, et al. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin[J]. Journal of Agricultural and Food Chemistry, 2000, 48(4):1 016-1 023.
[28] ZHANG Z, REGENSTEIN J M, ZHOU P, et al. Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel[J]. Ultrasonics - Sonochemistry, 2017, 34:960-967.
[29] SMYTH A B, SMITH D M, O'NEILL E. Disulfide bonds influence the head-induced chicken breast muscle myosin[J]. Journal of Food Science, 1998, 63(4):584-587.
[30] LIU K S, HSIEH F. Protein-protein interactions in high moisture-extruded meat analogs and heat-induced soy protein gels[J]. Journal of the American Oil Chemists' Society, 2007, 84(8):741-748.
[31] LIU G, XIONG Y L, BUTTERFIELD D A. Chemical, physical, and gel-forming properties of oxidized myofibrils and whey-and soy-protein isolates[J]. Journal of Food Science, 2000, 65(5):811-818.
[32] KO W C, YU C C, HSU K C. Changes in conformation and sulfhydryl groups of tilapia actomyosin by thermal treatment[J]. LWT—Food Science and Technology, 2007, 8(40):1 320.
[33] 潘锦锋, 沈慧星, 尤娟, 等. 草鱼肌原纤维蛋白加热过程中理化特性的变化[J]. 中国农业大学学报, 2009,14(6):17-22.
[34] ZHANG Z, YANG Y, ZHOU P, et al. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chemistry, 2017, 217:678-686.
[35] RELKIN P. Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters of β-lactoglobulin: their role in heat-induced sol-gel state transition[J]. International Journal of Biological Macromolecules, 1998, 22(1):59-66.
[36] SANTE-LHOUTELLIER V, AUBRY L, GATELLIER P. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins[J]. Journal of Agricultural and Food Chemistry, 2007, 55(13):5 343-5 348.
[37] 赵新淮, 徐红华, 姜毓君. 食品蛋白质—结构、性质与功能[M]. 北京:科学出版社, 2009.
[38] 韩敏义, 李伟锋, 王鹏, 等. 拉曼光谱研究NaCl浓度对猪肉肌原纤维蛋白凝胶硬度的影响[J]. 核农学报, 2014,28(12):2 192-2 199.
[39] ZHANG Z, YANG Y, TANG X, et al. Chemical forces study of heat-induced myofibrillar protein gel as affected by partial substitution of NaCl with KCl, MgCl2 and CaCl2[J]. CyTA - Journal of Food, 2016, 14(2):239-247.
[40] 张兴, 杨玉玲, 马云, 等. pH对肌原纤维蛋白及其热诱导凝胶非共价键作用力与结构的影响[J]. 中国农业科学, 2017,50(3):564-573.
[41] ZHANG Z, YANG Y, TANG X, et al. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure[J]. Food Chemistry, 2015, 188:111-118.
[42] SHIGERU UTSUMI J E K. Forces incolves in soy protein gelation: Effects of various reagents on the formation, hardness and solubility of heat-induced gels made form 7S, 11S, and soy isolate[J].Journal of Food Science, 1985, 50(5):1 278-1 282.
[43] 郭胜兰, 兰雅淇. 基于作用力探究凝胶因子与油凝胶之间的构效关系研究进展[J]. 食品科学, 2019,40(9):316-324.
[44] CAO H, WANG F, ZENG H, et al. Morphology tunable organogels based on benzoylhydrazine derivatives[J]. Journal of Molecular Liquids, 2014, 196:94-97.
[45] BADDI S, NAYAK R R, PALANISAMY A. Organogelation of self-assembling segmented poly(urethane acylsemicarbazides) and their dye adsorbing properties[J]. Polymer, 2017, 114:199-208.
Outlines

/