Application of isotope ratio mass spectrometers of δD, δ18O, & δ13Cin the authentication of fresh apple juice

  • LEI Jialei ,
  • TIAN Dan ,
  • XUE Jia ,
  • DENG Hong ,
  • MENG Yonghong ,
  • GUO Yurong
Expand
  • 1(College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi′an 710119, China)
    2(Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 200240, China)
    3(National Research & Development Center of Apple Processing Technology, Xi′an 710119, China)
    4(Engineering Research Center of High Value Utilization of Western China Fruit Resources,Ministry of Education, Xi′an 710119,China)

Received date: 2019-11-22

  Online published: 2020-06-11

Abstract

To identify the adulteration of sugar and water in apple juice, the δD, δ18O and δ13C values of water in fresh apple juice (FAJ) and adulterated apple juice(AAJ)were determined by isotope ratio mass spectrometry (IRMS). The results showed that δD and δ18O values of water in FAJ were significantly higher than those of exogenous water in AAJ and the δD, δ18O value was linear with the exogenous water content. Moreover, the δD, δ18O value declined with exogenous water content increased. The δ13C value of sugar component in FAJ showed that the fructose, glucose, and disaccharide content was -25.64‰--26.83‰, -25.01‰--26.36‰, and -22.41‰--23.24‰, respectively. Additionally, the percentage ranges of fructose, glucose and disaccharide in total sugar were 48.84%-52.39%, 14.34%-28.85%, and 10.47%-18.78%, respectively for FAJ, while the oligosaccharides were not detected. But the δ13C value and percentage in total sugar of disaccharide for AAJ were not in the above range. This study implies that the isotope ratios of δD, δ18O, δ13C are different between FAJ and AAJ, and can be used to distinguish the adulteration of fresh apple juice. It also provides an experimental basis for the application of isotope ratio mass spectrometry in the authentication detection of fresh apple juice.

Cite this article

LEI Jialei , TIAN Dan , XUE Jia , DENG Hong , MENG Yonghong , GUO Yurong . Application of isotope ratio mass spectrometers of δD, δ18O, & δ13Cin the authentication of fresh apple juice[J]. Food and Fermentation Industries, 2020 , 46(9) : 234 -242 . DOI: 10.13995/j.cnki.11-1802/ts.022905

References

[1] 邓红, 雷佳蕾, 杨天歌, 等. 超高压和高温短时杀菌对NFC苹果汁贮藏期品质的影响[J].中国农业科学, 2019, 52(21): 3 903-3 923.
[2] 孙学义, 孙振国. NFC果汁:产地初加工的果蔬既营养又健康[J]. 农产品加工, 2014(5): 14-15.
[3] 张淼, 李燮昕, 贾洪锋, 等. 我国果汁掺假检测技术研究现状[J]. 食品研究与开发, 2016, 37(5):205-208.
[4] 牛丽影, 胡小松, 赵镭, 等. 稳定同位素比率质谱法在NFC 与FC 果汁鉴别上的应用初探[J]. 中国食品学报, 2009, 9(4):192-197.
[5] 孔祥辉. 稳定同位素技术为食品真实性提供保障[J]. 质量与认证, 2017(11):80-81.
[6] DIN V ENV 12141-1997,Fruit and vegetable juices - Determination of the stable oxygen isotope ratio(18O/16O)of water from fruit juices – Method using isotope ratio mass spectrometry[S].
[7] DIN V ENV 12142-1997,Fruit and vegetable juices - Determination of the stable hydrogen isotope ratio (2H / 1H) of water from fruit juices -Method using isotope ratio mass spectrometry[S].
[8] 钟其顶, 王道兵, 熊正河. 稳定氢氧同位素鉴别非还原(NFC)橙汁真实性应用初探[J]. 饮料工业, 2011, 14(12):6.
[9] 李鑫, 陈小珍, 蒋鑫, 等. 元素分析-同位素比率质谱在橙汁掺假鉴别中的应用[J]. 食品工业, 2013, 34(7): 218-220.
[10] MAGDAS D A, VEDEANU N S, PUSCAS R. The use of stable isotopes ratios for authentication of fruit juices[J]. Chemical Papers, 2012,66(2):152-155.
[11] BONONI M, QUAGLIA G, TATEO F. Preliminary LC-IRMS characterization of italian pure lemon juices and evaluation of commercial juices distributed in the italian market[J]. Food Analytical Methods, 2016,9(10):1-8.
[12] JURAJ J, MILAN S. Application of capillary isotachophoresis for fruit juice authentication[J]. Journal of Chromatography A, 2001, 916:185-189.
[13] 李学民, 曹彦忠, 贾光群, 等. 液相色谱-同位素质谱法测定蜂蜜中糖组分δ13C值[J]. 中国蜂业, 2012(63):79-82.
[14] GUYON F, AUBERGER P, GAILLARD L, et al. B.(13)C/(12)C isotope ratios of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity[J]. Food Chemistry, 2014, 146(3):36-40.
[15] 张政权, 黄冬梅, 孟宪菁, 等. 同位素比率质谱法在农产品产地溯源中的研究进展[J]. 农产品质量与安全, 2019(2): 13-17.
[16] ERIC J, RÉGIS G, MÉLINDA R, et al. Improved detection of added water in orange juice by simultaneous determination of the oxygen-18/oxygen-16 isotope ratios of water and ethanol derived from sugars[J]. Journal of Agricultural and Food Chemistry, 2003, 51(18): 5 202-5 207.
[17] STERNBERG L, KEELEY J E. Hydrogen, oxygen, and carbon isotope ratios of cellulose from submerged aquatic crassulacean acid metabolism and non-crassulacean acid metabolism plants[J]. Plant Physiology, 1984, 76(1):68-70.
[18] MAGDAS D A, PUSCAS R. Stable isotopes determination in some Romanian fruit juices[J]. Isotopes Environ Health Stud, 2011, 47(3):372-378.
[19] BIZJAK B K, ELER K, MAZEJ D, et al. Isotopic and elemental characterisation of Slovenian apple juice according to geographical origin: Preliminary results[J]. Food Chemistry, 2016, 203:86-94.
[20] CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465):1 702-1 703.
[21] WANG J, FU B, LU N, et al. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau[J]. Sci Total Environ, 2017, 609:27-37.
[22] BONTEMPO L, CARUSO R, FIORILLO M, et al. Stable isotope ratios of H, C, N and O in Italian citrus juices[J]. Journal of Mass Spectrometry, 2014, 49(9):785-791.
[23] OGRINC N, BAT K, KOSIR I J, et al. Characterization of commercial slovenian and cypriot fruit juices using stable isotopes[J]. Journal of Agricultura and Food Chemistry, 2009, 57(15): 6 764-6 769.
[24] CAMIN F, DORDEVIC N, WEHRENS R, et al. Climatic and geographical dependence of the H, C and O stable isotope ratios of Italian wine[J]. Analytica Chimica Acta, 2015, 853(1): 384-390.
[25] ROSSMANN A, KOZIET J, MARTIN G J, et al. Determination of the carbon-13 content of sugars and pulp from fruit juices by isotope-ratio mass spectrometry (internal reference method): A European interlaboratory comparison[J]. Analytica Chimica Acta, 1997,340(1-3):21-29.
Outlines

/