Effect of hydroxyl radical oxidation on the thermal aggregation behavior of myofibrillar protein from grass carp (Ctenopharyngodonidellus)

  • LI Xuepeng ,
  • LIN Boyan ,
  • WANG Jinxiang ,
  • ZHOU Mingyan ,
  • ZHU Wenhui ,
  • YI Shumin ,
  • LI Jianrong ,
  • LIN Hong ,
  • MOU Weili ,
  • GUO Xiaohua
Expand
  • 1(College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural Products, National R & D Branch Centre for Surimi and Surimi Products Processing, Jinzhou 121013, China)
    2(College of Food Science and Engineering, the Ocean University of China, Qingdao 266003, China)
    3(Penglai Jinglu Fishery Co., Ltd, Yantai 265600, China)
    4(Shandong Meijia Group Co., Ltd, Rizhao 276815, China)

Received date: 2020-02-24

  Online published: 2020-06-17

Abstract

Myofibrillar protein from grass carp (Ctenopharyngodonidellus)was first oxidized by different concentrations of hydroxyl radicals (·OH) generated by FeCl3-VC-H2O2 system, and the effect of ·OH oxidation on the thermal aggregation behavior during the heating process was investigated by the measurements of protein thermal stability, surface hydrophobicity, Zeta potential values, endogenous fluorescence, turbidity, particle size and topographical features. The results showed that low-concentration of ·OH oxidation (generated by 0.1-1 mmol/L H2O2) was helpful to improve the thermal stability, while high-concentration of ·OH oxidation (generated by 10 mmol/L H2O2) could reduce the protein thermal stability. The surface hydrophobicity, Zeta potential values, and turbidity of myofibrillar protein in all groups were generally increased first and then decreased with the increase of temperature, while the endogenous fluorescence intensity and the surface hydrophobicity of the 10 mmol/L H2O2treated group decreased. The particle size of control group and the low-concentration of ·OH oxidation groups became larger with the increasing temperature, while the particle size of the 10 mmol/L H2O2treated group decreased after reaching a maximum at 70 ℃. The result of atomic for cemicroscope demonstrated that compared with the non-oxidized group, the aggregated particles formed by the oxidized myofibrillar protein were larger and fewer in number, and the distribution uniformity and shape regularity became worse. The results of this study indicated that low-concentration of ·OH oxidation was beneficial to the thermal aggregation of myofibrillar protein, while high-concentration ·OH oxidation was not favorable to the formation of soluble thermal aggregates. Meanwhile, ·OH oxidation changes the thermal aggregation mode and behavior of myofibrillar protein, which in turn affects the morphological characteristics of its thermal aggregates.

Cite this article

LI Xuepeng , LIN Boyan , WANG Jinxiang , ZHOU Mingyan , ZHU Wenhui , YI Shumin , LI Jianrong , LIN Hong , MOU Weili , GUO Xiaohua . Effect of hydroxyl radical oxidation on the thermal aggregation behavior of myofibrillar protein from grass carp (Ctenopharyngodonidellus)[J]. Food and Fermentation Industries, 2020 , 46(10) : 27 -34 . DOI: 10.13995/j.cnki.11-1802/ts.023743

References

[1] 农业部渔业渔政管理局.2019中国渔业统计年鉴[M].北京:中国农业出版社,2019:25.
[2] 刘慈坤.臭氧介导的肌原纤维蛋白质氧化对草鱼鱼糜凝胶持水性的影响机制研究[D].锦州:渤海大学,2019.
[3] UZUN H,IBANOGLU E,CATAL H,et al.Effects of ozone on functional properties of proteins[J].Food Chemistry,2012,134(2):647-654.
[4] ZHANG T,XUE Y,LI Z,et al.Effects of ozone on the removal of geosmin and the physicochemical properties of fish meat from bighead carp (Hypophthalmichthysnobilis)[J].Innovative Food Science &Emerging Technologies,2016,34:16-23.
[5] ZHANG T,XUE Y,LI Z,et al.Effects of ozone-induced oxidation on the physicochemical properties of myofibrillar proteins recovered from bighead carp (Hypophthalmichthysnobilis)[J].Food Bioprocess Technology,2015,8(1):181-190.
[6] JIANG W,HE Y,XIONG S,et al.Effect of mild ozone oxidation on structural changes of silver carp (Hypophthalmichthys molitrix) myosin[J].Food Bioprocess Technology,2017,10:1-9.
[7] PARK J W.Surimi and Surimi Seafood[M].New York:CRC Press Inc,2013:101-140.
[8] 潘锦锋,沈慧星,尤娟,等.草鱼肌原纤维蛋白加热过程中理化特性的变化[J].中国农业大学学报,2009,14(6):17-22.
[9] 畅鹏,杜鑫,杨东晴,等.蛋白质热聚集行为机理及其对蛋白质功能特性影响的研究进展[J].食品工业科技,2018,39(24):318-325.
[10] MÄKINEN O E,ZANNINI E,KOEHLER P,et al.Heat-denaturation and aggregation of quinoa (Chenopodium quinoa) globulins as affected by the pH value[J].Food Chemistry,2016,196:17-24.
[11] CHEN N,ZHAO M,NIEPCERON F,et al.The effect of the pH on thermal aggregation and gelation of soy proteins[J].Food Hydrocolloids,2017,66:27-36.
[12] ZHOU C Y,PAN D D,SUN Y Y,et al.The effect of cooking temperature on the aggregation and digestion rate of myofibrillar proteins in Jinhua ham[J].Journal of the Science of Food and Agriculture,2018,98(9):3 563-3 570.
[13] CUI X,XIONG Y L,KONG B,et al.Hydroxyl radical-stressed whey protein isolate:Chemical and structural properties[J].Food and Bioprocess Technology,2012,5(6):2 454-2 461.
[14] LI X,LIU C,WANG J,et al.Effect of hydroxyl radicals on biochemical and functional characteristics of myofibrillar protein from large yellow croaker (Pseudosciaenacrocea)[J].Journal of food biochemistry,2020,44(1):e13 084.
[15] ZHU W,HUAN H,BU Y,et al.Effects of hydroxyl radical induced oxidation on water holding capacity and protein structure of jumbo squid (Dosidicusgigas) mantle[J].International Journal of Food Science &Technology,2019,54(6):2 159-2 168.
[16] NYAISABA B M,LIU X,ZHU S,et al.Effect of hydroxyl-radical on the biochemical properties and structure of myofibrillar protein from Alaska pollock (Theragrachalcogramma)[J].LWT-Food Science &Technology,2019,106:15-21.
[17] 李学鹏,刘慈坤,周明言,等.羟自由基氧化对草鱼肌原纤维蛋白结构和凝胶性质的影响[J].食品科学,2017,38(21):30-37.
[18] 陈霞霞,杨文鸽,吕梁玉,等.羟自由基氧化体系对银鲳肌原纤维蛋白生化特性及其构象单元的影响[J].食品科学,2016,37(23):123-128.
[19] 李银,李侠,张春晖,等.羟自由基导致肉类肌原纤维蛋白氧化和凝胶性降低[J].农业工程学报,2013(12):286-292.
[20] SAEED S, HOWELL N K. Rheological and differential scanning calorimetry studies on structural and textural changes in frozen Atlantic mackerel (Scomberscombrus)[J].Journal of the Science of Food and Agriculture,2004,84(10):1 216-1 222.
[21] 邓思瑶, 杨文鸽, 徐大伦, 等. 电子束辐照对梅鱼鱼糜肌原纤维蛋白结构及凝胶特性的影响[J]. 现代食品科技, 2017, 33(1): 139-144.
[22] XIONG Y L, PARK D, OOIZUMI T. Variation in the cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments[J]. Journal of Agricultural and Food Chemistry, 2009, 57(1): 153-159.
[23] NYAISABA B M, LIU X, ZHU S, et al. Effect of hydroxyl-radical on the biochemical properties and structure of myofibrillar protein from Alaska pollock (Theragrachalcogramma)[J]. LWT- Food Science &Technology, 2019, 106: 15-21.
[24] XIONG Y L.Influence of pH and ionic environment on thermal aggregation of whey proteins[J].Journal of Agricultural and Food Chemistry,1992,40(3):380-384.
[25] LIU G,XIONG Y L.Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidized myosin[J].Journal of Agricultural and Food Chemistry,2000,48(3):624-630.
[26] LUND M N,HEINONEN M,BARON C P,et al.Protein oxidation in muscle foods: A review[J].Molecular Nutrition & Food Research,2011,55(1):83-95.
[27] 王金梅.大豆蛋白热聚集行为及界面乳化性质研究[D].广州:华南理工大学,2012.
[28] 胡亚丽.罗非鱼肌肉蛋白热变性聚集行为及其抑制[D].湛江:广东海洋大学,2015.
[29] 尤娟,郑文栋,王敏君,等. 臭氧氧化对鲢肌球蛋白热聚集的影响[J]. 华中农业大学学报, 2019, 38(6): 1-8.
[30] 袁德保.大豆蛋白热聚集行为及其机理研究[D].广州:华南理工大学,2010.
[31] 吴伟,吴晓娟,蔡勇建,等.过氧自由基氧化修饰对大米蛋白功能性质的影响[J].食品与机械,2016,32(6):5-8.
[32] STADTMAN E R, LEVINE R L.Free radical-mediated oxidation of free amino acids and amino acid residues in proteins[J].Amino Acids,2003,25(3-4):207-218.
[33] LEFEVRE F, FAUCONNEAU B, THOMPSON J W,et al.Thermal denaturation and aggregation properties of Atlantic salmon myofibrils and myosin from white and red muscles[J].Journal of Agricultural and Food Chemistry,2007,55(12):4 761-4 770.
[34] MOHAN M,RAMACHANDRAN D,SANKAR T V,et al.Physicochemical characterization of muscle proteins from different regions of mackerel (Rastrelligerkanagurta)[J].Food Chemistry,2008,106(2):451-457.
[35] 付湘晋,许时婴,王璋.酸碱处理对鲢鱼肌原纤维蛋白热变性、聚集、胶凝性质的影响[J].食品科学,2008,29(6):100-103.
[36] CAO M,CAO A,WANG J,et al.Effect of magnetic nanoparticles plus microwave or far-infrared thawing on protein conformation changes and moisture migration of red seabream (Pagrus major) fillets[J].Food Chemistry,2018,266:498-507.
[37] SUN W,ZHOU F,SUN D W,et al.Effect of oxidation on the emulsifying properties of myofibrillar proteins[J].Food and Bioprocess Technology,2013,6(7):1 703-1 712.
[38] WU W,HUA Y,LIN Q,et al.Effects of oxidative modification on thermal aggregation and gel properties of soy protein by peroxyl radicals[J].International Journal of Food Science &Technology,2011,46(9):1 891-1 897.
[39] 王艳敏,于加美,石彤,等.原子力显微镜研究L-半胱氨酸对鲢肌球蛋白溶液热聚集行为的影响[J].食品科学,2018,39(14):1-8.
[40] 盖静.不同加热温度对鳙鱼肌球蛋白聚集行为的影响及其机理研究[D].镇江:江苏大学,2016.
[41] SHARP A, OFFER G.The mechanism of formation of gels from myosin molecules[J].Journal of the Science of Food and Agriculture,1992,58(1):63-73.
[42] XIONG Y L,BLANCHARD S P,OOIZUMI T,et al.Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein[J].Journal of Food Science,2010,75(2):C215-C221.
Outlines

/