Gluconobacter strains with exopolysaccharide-producing ability were isolated from the fermentation broth of strawberry. These strains were identified by physiological, biochemical and molecular methods. Meanwhile, the phylogenetic trees were conducted by Neighbor-Joining and Maximum-Parsimony method to determine strain homology and species level. Two high-yield strains were identified as Gluconobacter kondonii, Gluconobacter frateurii naming G. kondonii PFY-7 and G. frateurii PFY-8, respectively. Their exopolysaccharides (EPS) production were (22.93±0.61) g/L and (23.81±0.51) g/L, respectively.
PEI Fangyi
,
MA Yanshi
,
CHEN Xue
. Isolation, identification and phylogenetic analysis of exopolysaccharide-producing Gluconobacter[J]. Food and Fermentation Industries, 2020
, 46(12)
: 121
-126
.
DOI: 10.13995/j.cnki.11-1802/ts.023654
[1] 姜静, 杜仁鹏, 郭尚旭, 等. 融合魏斯氏菌胞外多糖的分离纯化及其生化特性[J]. 食品科学, 2020, 41(1): 9-15.
[2] LI Q, LI Y M, HAN S, et al. Optimization of fermentation conditions and properties of an exopolysaccharide from Klebsiella sp. H-207 and application in adsorption of hexavalent chromium[J]. PloS One, 2013, 8(1): e53 542.
[3] 韩勇. 微生物胞外多糖提取纯化研究进展[J]. 黑龙江农业科学, 2019(5): 159-161.
[4] YANG Y F, FENG F, ZHOU Q Q, et al. Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides YF32 from soybean paste[J]. International Journal of Biological Macromolecules, 2018, 114: 529-535.
[5] 张文平, 赵英杰, 罗晟, 等. 高产胞外多糖植物乳杆菌筛选及其发酵工艺优化[J]. 食品与发酵工业, 2019, 45(21): 38-45.
[6] LI W, JI J, RUI X, et al. Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro[J]. Food Science and Technology, 2014, 59(2): 732-739.
[7] WANG J, ZHAO X, TIAN Z, et al. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir[J]. Carbohydrate Polymers, 2015, 125: 16-25.
[8] DI W, ZHANG L, WANG S, et al. Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk[J]. Carbohydrate Polymers, 2017, 171: 307-315.
[9] 马文锦, 李梅林, 王博, 等. 胶红酵母Rhodotorula mucilaginosa CICC 33013胞外多糖的分离纯化及抗氧化活性研究[J]. 食品与发酵工业, 2019, 45(11): 65-70.
[10] ASAI T. Taxonomic studies on acetic acid bacteria and allied oxidative bacteria isolated from fruits: A new classification of the oxidative bacteria[J]. Journal of Agriculture Chemical Social Japan, 1935, 11(1): 674-708.
[11] YAMADA Y, YUKPHAN P. Genera and species in acetic acid bacteria [J]. International Journal of Food Microbiology, 2008, 125(1): 15-24.
[12] 王斌, 陈福生. 醋酸菌的分类进展[J]. 中国酿造, 2014, 33(12): 1-10.
[13] VELÁZQUEZ-HERNÁNDEZH M L, BAIZABAL-AGUIRRE V M, BRAVO-PATIÑO A. Microbial fructosyltransferases and the role of fructans[J]. Journal of Applied Microbiology, 2010, 106(6): 1 763-1 778.
[14] GUPTA A, SINGH V K, QAZI G N, et al. Gluconobacter oxydans: Its biotechnological applications[J]. Journal of Molecular Microbiology and Biotechnology, 2001, 3(3): 445-456.
[15] 郭丹钊, 黄为一. 一株抗氧化功能胞外多糖产生菌的生长特性及系统发育分析[J]. 河南师范大学学报(自然科学版), 2008,36(2): 107-110.
[16] JAKOB F, STEGER S, VOGEL R F. Influence of novel fructans produced by selected acetic acid bacteria on the volume and texture of wheat breads[J]. European Food Research & Technology, 2012, 234(3): 493-499.
[17] HERMANN M, PETERMEIER H, VOGEL R F. Development of novel sourdoughs with in situ formed exopolysaccharides from acetic acid bacteria[J]. European Food Research & Technology, 2015, 241(2): 185-197.
[18] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
[19] 凌代文, 东秀珠. 乳酸菌分类鉴定及实验方法[M]. 北京: 中国轻工业出版社, 1999.
[20] 布坎南 R E, 吉本斯 N E. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984.
[21] 叶广彬, 陈源红, 王长丽, 等. 柠檬明串珠菌TD1产胞外多糖条件的响应面法优化及其抗氧化性研究[J]. 中国酿造, 2018, 37(11): 70-75.
[22] 李晶晶. 酵母多糖提取方法的探究及其对体外发酵参数的影响[D]. 呼和浩特:内蒙古农业大学, 2016.
[23] 杜仁鹏, 赵丹, 王晓宇, 等. 1株乳酸高产菌的分离鉴定与系统发育分析[J]. 中国食品学报, 2017, 17(9): 243-250.
[24] LAI Q L, LIU Y, SHAO Z Z. Bacillus xiamenensis sp. nov. isolated from intestinal tract contents of a flathead mullet (Mugil cephalus)[J]. Antonie van Leeuwenhoek, 2013, 105(1): 99-107.