Advances in effects of selected novel thawing technologies on meat quality

  • ZHANG Xinyue ,
  • DENG Shaolin ,
  • HU Yangjian ,
  • WANG Peng ,
  • HAN Minyi ,
  • XU Xinglian
Expand
  • 1(Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, China)
    2(Guangdong Wens Jia Wei Foodstuff Co., Ltd, Yunfu 510507, China)

Received date: 2020-03-02

  Online published: 2020-07-15

Abstract

The quality of frozen meat is related to the thawing process. Lipid oxidation, juice loss, color and flavor deterioration, and microorganism propagation occur during the thawing process, which may result in the deteriorated meat quality. Consequently, it is necessary to utilize proper thawing methods to maintain meat quality and minimize the losses. The novel thawing technology includes microwave, ultrasonic, high-voltage electrostatic field, and vacuum thawing, etc. It depends on the equipment that is different from the traditional thawing method. Compared with the traditional thawing method, the new ones are characterized by fast thawing speed, low energy consumption, and better maintenance of the meat quality. The present mini-review described different kinds of thawing methods, their advantages and disadvantages. This review will hopefully provide theoretical insight and practical guidance for enterprises to choose the appropriate thawing technology.

Cite this article

ZHANG Xinyue , DENG Shaolin , HU Yangjian , WANG Peng , HAN Minyi , XU Xinglian . Advances in effects of selected novel thawing technologies on meat quality[J]. Food and Fermentation Industries, 2020 , 46(12) : 293 -298 . DOI: 10.13995/j.cnki.11-1802/ts.023813

References

[1] 国家统计局.中国统计年鉴[EB/OL]. [2020-02-25]. http://www.stats.gov.cn/tjsj/ndsj/.
[2] KlLlÇ B, ŞIMSEK A, CLAUS J R, et al. Encapsulated phosphates reduce lipid oxidation in both ground chicken and ground beef during raw and cooked meat storage with some influence on color, pH, and cooking loss[J]. Meat Science, 2014, 97(1): 93-103.
[3] BENJAKUL S, VISESSANGUAN W, THONGKAEW C, et al. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage[J]. Food Research International, 2003, 36(8): 787-795.
[4] 周琳, 杨祯妮, 张敏, 等. 肉类全产业链损耗及可食用系参数研究[J]. 中国农业科学, 2019, 52(21): 3 934-3 942.
[5] 常海军, 唐翠, 唐春红. 不同解冻方式对猪肉品质特性的影响[J]. 食品科学, 2014, 35(10): 1-5.
[6] 王静杰, 朱传旭, 吴煜彤, 等. 解冻方法对原料肉品质及蛋白质结构影响的研究进展[J]. 食品工业科技, 2019, 40(16): 363-368.
[7] 刘富康, 张柔佳, 李锋, 等. 解冻方式对冷冻鱼糜解冻效果和凝胶特性的影响[J]. 山东农业大学学报(自然科学版), 2019, 50(4): 681-685.
[8] 张树峰, 陈丽丽, 赵利, 等. 不同解冻方法对脆肉鲩鱼肉品质特性的影响[J]. 河南工业大学学报(自然科学版), 2019, 40(3): 56-62.
[9] 鞠云, 唐春红, 赵楠, 等. 超声波在未来食品加工中的应用[J]. 重庆工商大学学报(自然科学版), 2015, 32(12): 71-75.
[10] LIU G, XIONG Y L, BUTTERFIELD D A. Chemical, physical, and gel-forming properties of oxidized myofibrils and whey- and soy-protein isolates[J]. Journal of Food Science, 2000, 65(5): 811-818.
[11] HE X, LIU R, TATSUMI E, et al. Factors affecting the thawing characteristics and energy consumption of frozen pork tenderloin meat using high-voltage electrostatic field[J]. Innovative Food Science & Emerging Technologies, 2014, 22: 110-115.
[12] 白亚乡, 栾忠奇, 李新军, 等. 高压静电场解冻机理分析[J]. 农业工程学报, 2010, 26(4): 347-350.
[13] MOUSAKHANI-GANJEH A, HAMDAMI N, SOLTANIZADEH N. Effect of high voltage electrostatic field thawing on the lipid oxidation of frozen tuna fish (Thunnus albacares)[J]. Innovative Food Science & Emerging Technologies, 2016, 36: 42-47.
[14] 李念文, 谢晶, 周然, 等. 不同真空蒸汽解冻条件对金枪鱼感官的影响[J]. 制冷学报, 2014, 35(5): 76-82.
[15] 张珂, 关志强, 李敏, 等. 真空解冻工艺对罗非鱼片品质的影响[J]. 食品工业科技, 2016, 37(8): 281-285.
[16] 何艳, 刘彦言, 鲍文静, 等. 不同解冻方法对冻结肉品质的影响[J]. 食品与发酵工业, 2018, 44(5): 291-295.
[17] 尤瑜敏. 冻结食品的解冻技术[J]. 食品科学, 2001(8): 87-90.
[18] 刘蒙佳, 周强, 戴玉梅, 等. 不同解冻方法及添加抗冻剂处理对冷冻海鲈鱼鱼片解冻品质影响[J]. 食品与发酵工业,2020,46(8): 210-218.
[19] 朱文慧, 宦海珍, 步营, 等. 不同解冻方式对秘鲁鱿鱼肌肉品质和风味特性的影响[J]. 食品研究与开发, 2019, 40(18): 84-89.
[20] 董庆利, 黎园园, 梁娜, 等. 冻结猪肉解冻措施筛选及优化[J]. 生物加工过程, 2011, 9(3): 66-70.
[21] 余力, 贺稚非, BATJARGAL E, 等. 不同解冻方式对伊拉兔肉品质特性的影响[J]. 食品科学, 2015, 36(14): 258-264.
[22] TAHER B J, FARID M M. Cyclic microwave thawing of frozen meat: Experimental and theoretical investigation[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(4): 379-389.
[23] YOU Y, HER J Y, SHAFEL T, et al. Supercooling preservation on quality of beef steak[J]. Journal of Food Engineering, 2020, 274: 109 840.
[24] ZHU M M, PENG Z Y, LU S, et al. Physicochemical properties and protein denaturation of pork longissimus dorsi muscle subjected to six microwave-based thawing methods[J]. Foods, 2019, 9(1): 26.
[25] CAO M, CAO A, WANG J, et al. Effect of magnetic nanoparticles plus microwave or far-infrared thawing on protein conformation changes and moisture migration of red seabream (Pagrus Major) fillets[J]. Food Chemistry, 2018, 266: 498-507.
[26] CAI L, CAO M, CAO A, et al. The effect of magnetic nanoparticles plus microwave thawing on the volatile flavor characteristics of largemouth bass(Micropterus salmoides) fillets[J]. Food and Bioprocess Technology, 2019, 12(8): 1 340-1 351.
[27] ZOU Y, XU P, WU H, et al. Effects of different ultrasound power on physicochemical property and functional performance of chicken actomyosin[J]. International Journal of Biological Macromolecules, 2018, 113: 640-647.
[28] 索原杰, 宣晓婷, 崔燕, 等. 超声波辅助冻结在水产品及肉类产品中的应用研究进展及解冻机制[J]. 生物加工过程, 2018, 16(3): 78-83.
[29] 张昕. 不同解冻工艺对鸡胸肉品质的影响[D]. 南京:南京农业大学, 2017.
[30] 张昕, 宋蕾, 高天, 等. 超声波解冻对鸡胸肉品质的影响[J]. 食品科学, 2018, 39(5): 135-140.
[31] 钟莉, 杨庆峰, 陈文, 等. 不同解冻方法对畜禽肉品质的影响[J]. 食品工业, 2016, 37(12): 42-46.
[32] TROY D J, KERRY J P. Consumer perception and the role of science in the meat industry[J]. Meat Science, 2010, 86(1): 214-226.
[33] HONG G P, CHUN J Y, JO Y J, et al. Effects of water or brine immersion thawing combined with ultrasound on quality attributes of frozen pork loin[J]. Korean Journal for Food Science of Animal Resources, 2014, 34(1): 115-121.
[34] 蒋奕, 程天赋, 王吉人, 等. 超声波解冻对猪肉品质的影响[J]. 肉类研究, 2017, 31(11): 14-19.
[35] 马超锋, 关志强, 李敏, 等. 超声波解冻对壳聚糖涂膜罗非鱼片的水分分布及品质相关性研究[J]. 食品工业科技, 2017, 38(2): 332-336;369.
[36] GAMBUTEANU C, ALEXE P. Comparison of thawing assisted by low-intensity ultrasound on technological properties of pork Longissimus dorsi muscle[J]. Journal of Food Science and Technology, 2015, 52(4): 2 130-2 138.
[37] KAO N-Y, TU Y-F, SRIDHAR K, et al. Effect of a high voltage electrostatic field (HVEF) on the shelf-life of fresh-cut broccoli (Brassica oleracea var. italica)[J]. LWT, 2019, 116: 108 532.
[38] 马坚. 高压静电场对牛里脊肉冻结和解冻的保鲜研究[J]. 家电科技, 2018(7): 68-71.
[39] JIA G, SHA K, FENG X, et al. Post-thawing metabolite profile and amino acid oxidation of thawed pork tenderloin by HVEF-A short communication[J]. Food Chemistry, 2019, 291: 16-21.
[40] 唐梦, 岑剑伟, 李来好, 等. 高压静电场解冻对冻罗非鱼片品质的影响[J]. 食品工业科技, 2017, 38(13): 1-6.
[41] AMIRI A, MOUSAKHANI-GANJEH A, SHAFIEKHANI S, et al. Effect of high voltage electrostatic field thawing on the functional and physicochemical properties of myofibrillar proteins[J]. Innovative Food Science & Emerging Technologies, 2019, 56: 102 191.
[42] MOUSAKHANI-GANJEH A, HAMDAMI N, SOLTANIZADEH N. Impact of high voltage electric field thawing on the quality of frozen tuna fish (Thunnus albacares)[J]. Journal of Food Engineering, 2015, 156: 39-44.
[43] 王伟强, 董丹华. DENBA+静电波保鲜技术应用浅析[J]. 新疆农机化, 2017(2): 25-27.
[44] 魏国平, 冯志刚, 熊双丽, 等. DENBA+静电场猪肉保鲜效果研究[J]. 现代食品, 2019(23): 99-102;105.
[45] DENBA+解冻技术介绍[EB/OL]. [2020-02-19]. http://www.hnxianba.com/col.jsp?id=153.
[46] 尚柯, 杨方威, 李侠, 等. 静电场辅助冻结-解冻对肌肉保水性及蛋白理化特性的影响[J]. 食品科学, 2018, 39(3): 157-162.
[47] LI F, WANG B, LIU Q, et al. Changes in myofibrillar protein gel quality of porcine longissimus muscle induced by its stuctural modification under different thawing methods[J]. Meat Science, 2019, 147: 108-115.
[48] WANG B, DU X, KONG B, et al. Effect of ultrasound thawing, vacuum thawing, and microwave thawing on gelling properties of protein from porcine longissimus dorsi[J]. Ultrasonics Sonochemistry, 2020,64: 104 860.
[49] 宋睿琪, 邹同华, 张坤生, 等. 真空解冻工艺对猪肉品质的影响[J]. 食品科技, 2019, 44(9): 119-124.
[50] 关志强, 张珂, 李敏, 等. 不同解冻方法对冻藏罗非鱼片理化性能的影响[J]. 渔业现代化, 2016, 43(4): 38-43.
Outlines

/