Lactobacillus plantarum with high cell adhesion and biofilm formation ability effectively inhibits the transcriptional activities of Campylobacter jejuni virulence genes in mice

  • JIN Xing ,
  • HE Yufeng ,
  • ZHOU Yonghua ,
  • CHEN Xiaohua ,
  • WANG Gang ,
  • ZHAO Jianxin ,
  • ZHANG Hao ,
  • CHEN Wei
Expand
  • 1(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
    2(Key Laboratory of Parasitic Disease Prevention and Control Technology for National Health and Health Commission, Wuxi 214064, China)
    3(College of Life Science and Environment, Hengyang Normal University, Hengyang 421008, China)

Received date: 2020-02-09

  Online published: 2020-08-17

Abstract

In this study, the biological characteristics of 12 Lactobacillus plantarum strains were evaluated, including their growth rate, ability of acid production, adhesion to HT-29 cells, ability to form biofilms, surface hydrophobicity, and acid and bile salt resistance. Meanwhile, these strains were administered to Campylobacter jejuni and Toxoplasma gondii co-infected mice by gavage. The results showed that Lactobacillus plantarum N36 and ZL4 could significantly reduce the transcriptional activities of Campylobacter jejuni virulence genes. The correlation analysis of biological characteristics of Lactobacillus plantarum and the transcriptional activities of Campylobacter jejuni virulence genes showed that the high cell adhesion caused by the high surface hydrophobicity on bacterial body and the strong biofilm formation ability of the strains could significantly reduce the virulence genes transcriptional activities of Campylobacter jejuni in mice.

Cite this article

JIN Xing , HE Yufeng , ZHOU Yonghua , CHEN Xiaohua , WANG Gang , ZHAO Jianxin , ZHANG Hao , CHEN Wei . Lactobacillus plantarum with high cell adhesion and biofilm formation ability effectively inhibits the transcriptional activities of Campylobacter jejuni virulence genes in mice[J]. Food and Fermentation Industries, 2020 , 46(14) : 12 -18 . DOI: 10.13995/j.cnki.11-1802/ts.023559

References

[1] BLASER M J. Epidemiologic and clinical features of Campylobacter jejuni infections[J]. Journal of Infectious Diseases, 1997, 176(2): 103-105.
[2] MICHETTI P, DORTA G, WIESEL P H, et al. Effect of whey-based culture supernatant of Lactobacillus acidophilus (johnsonii) La1 on Helicobacter pylori infection in humans[J]. Digestion, 1999, 60(3): 203-209.
[3] SHU Q, GILL H S. A dietary probiotic (Bifidobacterium lactis HN019) reduces the severity of Escherichia coli O157: H7 infection in mice[J]. Medical Microbiology and Immunology, 2001, 189(3): 147-152.
[4] GILL H S, SHU Q, LIN H, et al. Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001[J]. Medical Microbiology and Immunology, 2001, 190(3): 97-104.
[5] MILLER B J, FRANZ C M A P, CHO G S, et al. Expression of the malolactic enzyme gene (mle) from Lactobacillus plantarum under wine making conditions[J]. Current Microbiology, 2011, 62 (6):1 682-1 688.
[6] RUIZ L, MARGOLLES A, SNCHEZ B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium[J].Frontiers in Microbiology, 2013, 4:396
[7] 陈卫.乳酸菌科学与技术[M].北京:科学出版社, 2018.
[8] 赵山山.植物乳杆菌ST-Ⅲ盐应激反应及其协同保护作用的研究[D].无锡:江南大学, 2016.
[9] 杨杨.植物乳杆菌CAUH2氧化胁迫反应机制及转录因子CopR在氧化胁迫应答中的作用[D].北京:中国农业大学, 2018.
[10] ERCAN O, WELS M, SMID E J, et al. Genome-wide transcriptional responses to carbon s tarvation in nongrowing Lactococcus lactis[J]. Applied and Environmental Microbiology, 2015, 81(7):2 554-2 561.
[11] CAMPANA R, VAN H S, BAFFONE W. Strain-specific probiotic properties of lactic acid bacte ria and their interference with human intestinal pathogens invasion[J].Gut Pathogens, 2017, 9(1):1-12.
[12] EKMEKCIU I, FIEBIGER U, STINGL K, et al. Amelioration of intestinal and systemic sequela e of murine Campylobacter jejuni infection by probiotic VSL#3 treatment[J]. Gut Pathogens, 2017, 9(1):17.
[13] SMIALEK M, BURCHARDT S, KONCICKI A. The influence of probiotic supplementation in broiler chickens on population and carcass contamination with Campylobacter spp.field study[J]. Research in Veterinary Science, 2018, 118:312-316.
[14] 姚沛琳. 乳酸菌抑制变异链球菌生物膜形成的研究[D]. 无锡: 江南大学, 2015.
[15] KOS B, ŠUŠKOVIĆ J, VUKOVIĆ S, et al. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92[J]. Journal of Applied Microbiology, 2003, 94(6): 981-987.
[16] 俞赟霞. 产细菌素乳酸菌对小鼠肠道微生态的影响[D]. 无锡: 江南大学, 2018.
[17] 刘妍. 桦褐孔菌多糖对弓形虫感染小鼠病理学影响的研究[D]. 延吉: 延边大学, 2011.
[18] WANG Gang, HE Yufeng, ZHOU Yonghua, et al. The effect of co-infection of food-borne pathogenic bacteria on the progression of Campylobacter jejuni infection in mice[J]. Frontiers in Microbiology, 2018, 9: 1-13.
[19] MUNDI A, DELCENSERIE V, AMIRIJAMI M, et al. Cell-free preparations of Lactobacillus acidophilusstrain La-5 and Bifidobacterium longum strain NCC2705 affect virulence gene expression in Campylobacter jejuni[J]. Journal of Food Protection, 2013, 76(10): 1 740-1 746.
[20] 崔树茂.乳酸菌的生长抑制和冻干存活的影响因素及规律[D].无锡:江南大学, 2016.
[21] AIBA Y, SUZUKI N, KABIR A M, et al. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model [J]. Am J Gastroenterol, 1998, 93(11): 2 097-2 101.
[22] WANG G, ZHAO Y, TIAN F, et al. Screening of adhesive Lactobacilli with antagonistic activity against Campylobacter jejuni[J]. Food Control, 2014, 44:49-57.
[23] 王刚, 贺禹丰, 陈晓华, 等.乳酸菌生物学特性与其拮抗空肠弯曲杆菌在小鼠肠道定植能力的分析 [J].食品与发酵工业, 2017, 43 (8):73-80.
[24] 赵煜. 具有拮抗空肠弯曲杆菌功效的乳酸菌的研究[D]. 无锡: 江南大学, 2012.
[25] PÉREZ P F, MINNAARD Y, DISALVO E A, et al. Surface properties of Bifidobacterial strains of human origin[J]. Applied and Environmental Microbiology, 1998, 64(1): 21-26.
[26] ROJAS M, CONWAY P L. Colonization by Lactobacilli of piglet small intestinal mucus[J]. Journal of Applied Microbiology, 1996, 81(5): 474-480.
[27] ABBASI B, GHIASVAND R, MIRLOHI M. Kidney function improvement by soy milk containi ng Lactobacillus plantarum A7 in type 2 diabetic patients with nephropathy:A double-blinded rand omized controlled trial[J]. Iranian Journal of Kidney Diseases, 2017, 11(1):36-43.
[28] LIU J, HU D, CHEN Y, et al. Strain-specific properties of Lactobacillus plantarum for prevention of Salmonella infection[J]. Food & Function, 2018, 9 (7):3 673-3 682.
[29] HAAG L M, ANDRÉ F, OTTO B, et al. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice [J]. PLoS One, 2012, 7(5): 1-13.
[30] 张婷婷. 乳酸菌对空肠弯曲杆菌毒力基因表达的影响 [D]. 无锡: 江南大学, 2016.
[31] 翟海华,王娟,王君伟,等. 空肠弯曲菌的致病性及致病机制研究进展[J]. 动物医学进展,2013,34(12): 164-169.
[32] NACHAMKIN I, YANG X H, STERN N J. Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: Analysis with flagellar mutants[J]. Applied and Environmental Microbiology, 1993, 59(5): 1 269-1 273.
[33] BURGAIN J, GAIANI C, FRANCIUS G, et al. In vitro interactions between probiotic bacteria and milk proteins probed by atomic force microscopy[J]. Colloids and Surfaces B: Biointerfaces, 2013, 104(1): 153-162.
[34] MEDELLIN-PENA M J, WANG H, JOHNSON R, et al. Probiotics affect virulence-related gene expression in Escherichia coli O157: H7[J]. Applied and Environmental Microbiology, 2007, 73(13): 4 259-4 267.
[35] RYAN K A, OHARA A M, VAN P J P, et al. Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori[J]. Journal of Medical Microbiology, 2009, 58(8): 996-1 005.
Outlines

/