Research progress on health effects of short-chain fatty acids and its ethyl esters in strong aroma-type Baijiu

  • WANG Shixin ,
  • KAI Lang ,
  • YANG Jingyi ,
  • JI Xingming ,
  • QIAN Hanqi ,
  • XU Yan ,
  • DU Hai
Expand
  • 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health(Beijing Technology and Business University), Beijing 100048, China
    2 School of Biotechnology, Jiangnan University, Wuxi 214122, China
    3 Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China

Received date: 2020-02-23

  Revised date: 2020-04-03

  Online published: 2020-09-17

Abstract

Alcoholic liver disease (ALD) is a global disease associated with chronic overdrinking of alcohol. In addition to abstaining from alcohol, giving full play to the effects of health factors in alcoholic beverages could also reduce the harm of alcohol to human body. Strong aroma-type Baijiu(Chinese liquor) is the liquor with the highest sales volume in China. The content of short-chain fatty acids (SCFAs) in strong aroma-type Baijiu is high, and it has important contribution to the flavor of the liquor. These SCFAs are mainly metabolites of Clostridium spp. in pit mud with certain biological activities, which can accelerate the metabolism of ethanol in vivo, reduce liquor intoxication, affect the growth and metabolism of gut microbes, protect the intestinal mucosal barrier, participate in host immunity and inflammatory reactions, and are closely related to the development of alcoholic liver disease. This paper reviewed the production and physiological effects of SCFAs and its ethyl esters in strong aroma-type Baijiu.

Cite this article

WANG Shixin , KAI Lang , YANG Jingyi , JI Xingming , QIAN Hanqi , XU Yan , DU Hai . Research progress on health effects of short-chain fatty acids and its ethyl esters in strong aroma-type Baijiu[J]. Food and Fermentation Industries, 2020 , 46(16) : 257 -263 . DOI: 10.13995/j.cnki.11-1802/ts.023723

References

[1] FANG Cheng,DU Hai.Compositional differences and similarities between Typical Chinese Baijiu and Western Liquor as revealed by mass spectrometry-based Metabolomics[J].Metabolites,2019,9(1):2.
[2] 王琳琳,王刚,张灏,等.具粘附特性的动物双歧杆菌对便秘模型小鼠血清中胃肠调节肽水平的影响[J].中国食品学报,2019,19(6):13-20.
[3] BAJAJ J S.Alcohol, liver disease and the gut microbiota[J].Nat Rev Gastroenterol Hepatol,2019,16(4):235-246.
[4] 李大和.泸州老窖 国之瑰宝——泸州老窖大曲酒五十年代查定记实[J].酿酒科技,2004(3):77-78.
[5] 何培新,李聪聪,胡晓龙,等.基于HS-SPME-GC-MS的浓香型白酒窖泥中可培养Clostridium spp.挥发性代谢物成分分析[J].轻工学报,2017,32(6):1-11.
[6] 卜光明,周化斌,周茂洪,等.酿造酒中非酿酒酵母的研究进展[J].食品工业科技,2019,40(14):346-352.
[7] 方跃进.红曲霉在我国白酒生产中的作用[J].中国酿造,2013,32(4):133-135.
[8] 刘凡,周新虎,陈翔,等.洋河浓香型白酒发酵过程酒醅微生物群落结构解析及其与有机酸合成的相关性[J].微生物学报,2018,58(12):2 087-2 099.
[9] 张杰,程伟,潘天全,等.浓香型白酒风味成分研究现状及展望[J].酿酒,2019,46(1):29-32.
[10] 刘凡,仇钰莹,周新虎,等.洋河浓香型白酒酒醅中产酸细菌与有机酸合成的相关性研究[J].食品与发酵工业,2018,44(12):22-29.
[11] FAN W L,QIAN M C.Identification of aroma compounds in Chinese ″Yanghe Daqu″ liquor by normal phase chromatography fractionation followed by gas chromatography olfactometry[J].Flavour and Fragrance Journal,2006,21(2):333-342.
[12] YAO Fen,YI Bin,SHEN Caihong,et al. Chemical analysis of the Chinese liquor Luzhoulaojiao by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry[J].Scientific Reports,2015,5(1):9 553.
[13] 钱冲,廖永红,刘明艳,等.不同香型白酒的聚类分析和主成分分析[J].中国食品学报,2017,17(2):243-255.
[14] 范文来,聂庆庆,徐岩.洋河绵柔型白酒关键风味成分[J].食品科学,2013,34(4):135-139.
[15] 于卓腾,杭苏琴,姚文,等.肠道产丁酸细菌及其丁酸产生机制的研究进展[J].世界华人消化杂志,2006,14(25):2 531-2 534.
[16] 唐瑞.己酸菌、窖泥与浓香型白酒之间的关系[J].酿酒,2005,33(4):24-27.
[17] 谢佳.杂醇、酸、酯组成及氨基酸对白酒醉度的调节作用[D].广州:华南理工大学,2018.
[18] 谢佳,彭斌,何松贵,等.白酒关键微量成分对醉度及小鼠乙醇代谢和急性酒精性肝损伤的影响[J].中国酿造,2018,37(6):155-160.
[19] FUKUDA S,TOH H,HASE K,et al.Bifidobacteria can protect from enteropathogenic infection through production of acetate[J].Nature,2011,469(7 331):543-547.
[20] 冯泽猛,包显颖,印遇龙.胃肠道黏液层中Akkermansia muciniphila的定殖及其与宿主的相互作用[J].中国农业科学,2016,49(8):1 577-1 584.
[21] VIDYASAGAR S,RAMAKRISHNA B S. Effects of butyrate on active sodium and chloride transport in rat and rabbit distal colon[J].Journal of Physiology,2002,539(1):163-173.
[22] MA Xi,FAN Peixin,LI Linsen,et al.Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions[J].Journal of Animal Science,2012,90:266-268.
[23] WANG Hongbo,WANG Pengyuan,WANG Xin,et al.Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J].Digestive Diseases and Sciences,2012,57(12):3 126-3 135.
[24] PENG L Y,LI Z R,GREEN R S,et al.Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers[J].Journal of Nutrition,2009,139(9):1 619-1 625.
[25] TROMPETTE A,GOLLWITZER E S,YADAVA K,et al.Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J].Nature Medicine,2014,20(2):159-166.
[26] MACIA L,TAN J,VIEIRA A T.Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J].Nature Communications,2015,6:6 734.
[27] KIM M H,KANG S G,PARK J H,et al.Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J].Gastroenterology,2013,145(2):396-406.
[28] MASLOWSKI K M,VIEIRA A T,KRANICH J.Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J].Nature,2009,461(7 268):1 282-1 286.
[29] SINGH N,GURAV A,SIVAPRAKASAM S,et al.Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J].Immunity,2014,40(1):128-139.
[30] THANGARAJU M,CRESCI G,LIU K,et al.GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon[J]. Cancer Research,2009,69(7):2 826-2 832.
[31] CHANG P V,HAO L,OFFERMANNS S,et al.The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(6):2 247-2 252.
[32] FURUSAWA Y,OBATA Y,FUKUDA S,et al.Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature,2013,504(7 480):446-450.
[33] ZHOU Da,PAN Qin,LIU Xiaolin,et al.Clostridium butyricum B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation[J].Journal of Gastroenterology and Hepatology,2017,32(9):1 640-1 648.
[34] LIN M Y,DE ZOETE M R,VAN PUTTEN J P,et al.Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases[J].Frontiers in Immunology,2015,6:554.
[35] KIM M,QIE Y Q,PARK J,et al.Gut microbial metabolites fuel host antibody responses[J].Cell Host & Microbe,2016,20(2):202-214.
[36] 臧月,王生,刘楠,等.肠道菌群失调介导酒精性肝病发生发展的机制研究进展[J].中国药理学通报,2016,32(4):451-455.
[37] 窦慧馨,张得钧.酒精性肝病分子发病机制研究进展[J].基因组学与应用生物学,2016,35(7):1 643-1 647.
[38] ENGEN P A,GREEN S J,VOIGT R M,et al.The gastrointestinal microbiome: Alcohol effects on the composition of intestinal microbiota[J].Alcohol Res,2015,37(2):223-236.
[39] ZHOU Da,PAN Qin,XIN Fengzhi,et al.Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier[J].World J Gastroenterol,2017,23(1):60-75.
[40] BLOEMEN J G,VENEMA K,VAN DE POLL M C,et al.Short chain fatty acids exchange across the gut and liver in humans measured at surgery[J].Clinical Nutrition,2009,28(6):657-661.
[41] ZHOU Da,FAN Jiangao.Microbial metabolites in non-alcoholic fatty liver disease[J].World J Gastroenterol,2019,25(17):2 019-2 028.
[42] WANG Zhen,ZHANG Xiaoxia, ZHU Lili,et al.Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice[J].International Immunopharmacology,2020,78:106 062.
[43] MATTACE R G,SIMEOLI R,RUSSO R,et al.Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet[J].PLoS One,2013,8(7):e68 626.
[44] ENDO H,NIIOKA M,KOBAYASHI N,et al.Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: New insight into the probiotics for the gut-liver axis[J].PLoS One,2013,8(5):e63 388.
[45] FANG C,DU H,ZHENG X J,et al.Solid-state fermented Chinese alcoholic beverage (baijiu) and ethanol resulted in distinct metabolic and microbiome responses[J].FASEB Journal,2019,33(6):7 274-7 288.
Outlines

/